
Verification of Control System Software

Control systems are typically prototyped with

graphical design tools such as Simulink; the

actual implementation is then obtained by

either compilation from these tools or via other

high-level languages such as Scade. All of these

steps, including early design, may result in bugs

slipping into the end product. These bugs may

lead to costly product recalls or, in the case

of safety-critical systems (aircraft fly-by-wire,

medical infusion pumps, safety-critical industrial

processes, etc.), to loss of life and limb.

The traditional way to detect bugs in a

computer system is through testing: run the

programs or components thereof on sample

inputs and check for violations of expected

system behaviors—not just program crashes,

but also functional properties such as actuator

constraint violations and inconsistent mode

settings. Although coverage criteria for testing

typically guarantee that all instructions of the

program have been exercised, testing cannot

exercise all possible configuration executions

on all possible inputs.

The limitations of testing could be overcome

if we could prove that a program behaves

correctly on all possible inputs. This is the goal

of formal validation and verification research,

which has resulted in practical tools and

successes in this area!

Contributors: David Monniaux, VERIMAG, CNRS, France, and Antoine Miné, LIENS, CNRS, France

The Airbus A380 has

advanced fly-by-wire

controls implemented

in software. A380

software development

benefited from static

program analysis tools.

From Testing to Proving

Correctness proofs for programs were proposed in the late 1960s by Floyd and Hoare,

but the limited technologies available for automating such proofs long confined them

to academic examples and idealized versions of crucial algorithms.

A crucial limitation of automated program analysis is that no analysis algorithm can

be guaranteed to never give false negatives (failing to point to bugs) or false positives

(bugs that cannot occur in reality). This is a basic mathematical result of computability

theory. Thus, all automated analysis methods effect a balance between these two kinds

of errors/imprecisions.

Within these theoretical limits, though, practical tools can and have been developed

and deployed.

From Academia to Industry

The aerospace community’s interest in formal methods was renewed in 1996 by the explosion

of the maiden flight of the Ariane 5 rocket due to a software bug (an arithmetic overflow).

A team of researchers from INRIA was commissioned to design a static analysis system that

could detect such kinds of bugs in future. The academic IABC static analyzer was later turned

into the PolySpace verifier. (PolySpace, a startup, was later bought by The MathWorks.)

The Airbus A380 was the next major application of static analysis in aerospace.

Researchers from École Normale Supérieure of Paris and CNRS developed new analysis

techniques for avionics software (e.g., analyzing floating-point computations such

as digital filters). The Astrée tool is now marketed through AbsInt GmbH, which also

develops the aiT tool for proving bounds on worst-case execution time on modern

embedded processors (with pipelined execution units, caches, etc.).

In the United States, the U.S. Food and Drug Administration (FDA) began an initiative

in 2010 enforcing the use of static analyzers for programs running infusion pumps; the

misbehavior of such programs may result in the death of patients.

Success Stories
FOR CONTROL

From: The Impact of Control Technology, 2nd ed., T. Samad and A.M. Annaswamy (eds.), 2014. Available at www.ieeecss.org.

For more information on the Astrée tool, visit http://www.astree.ens.fr and http://www.absint.com/astree/.
Also see the companion flyer on “Toward Verifiably Correct Control Implementations” in the Research Challenges section of this volume.

The Astrée Static Analyzer

The Astrée static analyzer takes as input C source code and optional

annotations (e.g., range of inputs). After a fully automated analysis,

it provides easy-to-understand “traffic-light” indications: a green

light for program instructions for which it can prove that no unsafe

behavior may occur, a red light for those that it can prove will

necessarily result in unsafe behavior if executed, and an orange

light for those for which it cannot provide proofs of either safe or

unsafe performance.

Some static analysis tools may exhibit false negatives: they may

fail to flag possible runtime errors or specification violations.

In contrast, Astrée is sound. It performs an exhaustive scan

of the control and data space of the program, according to

the user-specified inputs and the semantics of the C language

(including fine points such as floating-point computations,

modular integers, pointer manipulations, and memory layouts).

It thus discovers all runtime errors. Such soundness of results

is often considered to necessarily lead to many false positives

(warnings about nonexistent problems), but this is not the case

with Astrée when applied to its intended target: safety-critical

reactive control code with neither dynamic memory allocation,

recursion, nor concurrency. By concentrating on the discovery

of runtime errors in such programs, Astrée solves a simpler

problem than general-purpose analysis tools, but solves it well.

Astrée is specialized. It is parametrized by a set of abstractions that

have been specially tuned for use on embedded control-command

software, with a preference for avionic and space software. It

includes very specific, mathematically sound analyses for constructs

commonly found in such applications (e.g., infinite-impulse-response

digital filters or quaternion computations) but not in general-purpose

software. Designed to be efficient and precise (few or no false alarms)

on these codes, it has also been shown to perform well in other

application domains of embedded C software.

Astrée has been successfully applied to the analysis of large

industrial codes. In just a few hours, it was able to prove

automatically the total absence of runtime error in codes of over

1 million lines. For instance, it analyzed Airbus A380 fly-by-wire

control code in 14 hours with no false positives.

The Ariane 5 rocket had to be destroyed on its

maiden flight because of a software bug (an

arithmetic overflow). This incident renewed

interest in formal verification and ultimately

resulted in a success story for the technology.

The graphical user interface of the Astrée tool displays program lines that could cause runtime errors

and also outputs useful information on the program, such as the range and usage of variables.

