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Decision and Communication Networks: Overview and Challenges 

A decision network can be broadly characterized as a distributed system of locally controlled agents 
whose dynamics and/or objective functions have a neighborhood structure that can be described by a 
graph. The decision network is supported by an underlying communication network that may consist of 
both wired and wireless networks of varying quality and whose connectivity structure need not align 
with the decision network topology. We refer to the combination of the two networks as a networked 
decision system. A schematic networked decision system is shown in Fig. 1. 

A familiar example of a networked decision 
system is a formation of unmanned aerial 
vehicles (UAVs). Each UAV has a local 
controller to control its flight, but it must also 
follow commanded trajectories while 
avoiding collisions and the like. This may 
require information from other nearby UAVs, 
ground bases, or other information sources. 
In addition, a leader UAV may need to 
provide trajectory or waypoint commands to 
the formation. These decisions can be 

communicated through the formation itself (as 
a multihop routing network) or through other 
nodes. Other examples of networked decision 
systems include distributed emergency 
response systems, interconnected 
transportation, energy systems, and even 
social networks. 

Networked decision systems are pervasive, and society 
and industry are becoming increasingly dependent on 
them. However, decentralized decision making over 
imperfect networks is fraught with difficulties. Issues 
and challenges are especially pronounced when 
dynamics are involved as the stability of the network 
also becomes a top priority. It is precisely these areas 
that the controls research community, with its history 
of designing robust and optimal dynamic systems, can 
address. 

The ultimate objective of controls-related research in networked decision systems is a general analysis 
framework that can be used to derive fundamental performance limitations. The variety of realistic 
complications that such a framework must accommodate—communication delays, uncertainty in 

Networked Decision Systems 

Figure 1. Illustration of a networked decision system. 
The upper-level nodes represent the decision network 
component (such as UAVs) and the lower-level nodes 

represent the communication network component 
(such as a multihop network). 
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A research objective is to characterize 
the fundamental limitations and capa-
bilities of networked systems by deriving 
performance bounds that are functions 
of the underlying topologies of the net-
works, the capacities of the communi-
cation links, the dynamics of each node, 
and the computational and storage 
resources available to each node. 

information, competitive environments, 
limitations of communication and computa-
tional resources, learning and adaptation, 
mobility in agents or infrastructure nodes—
points to the ambitious nature of this goal. We 
begin our discussion with a description of the 
latest research in networked control systems. 
Although these efforts have revealed many 
fundamental limitations of these systems, 
generalizations of them lead to a general 
formulation of interest. We conclude with 
some broad considerations related to a 
unified theory of networked systems. 

Decisions Networks: Fundamental Limits and Open Questions 

Challenges in Networked Decision Systems 

If one is able (willing) to assume a priori that the decision network and communication network do not 
interact except though an interface of constraints and requirements, the two networks can be analyzed 
and designed essentially independent of one another, allowing for a classical analysis of the system. In 
particular, the communication network can be abstracted as a set of static constraints (such as channel 
capacities or delays) on the operations of the decision network, whereas the decision network can be 
seen by the communication network as imposing requirements or preferences such as performance 
guarantees or utility functions. However, this assumption is rarely true in practice. For example, the 
decision network may take actions that disconnect the communication network or the communication 
network may not efficiently route critical information to portions of the decision network quickly 
enough, affecting performance or even stability.  

Complicating matters are the dynamics of the decentralized decision network itself. Even if the 
underlying communication network is perfect (infinite capacity and no latency), the decision network 
possesses performance limitations that are missing in the centralized single decision agent. In fact, the 
analysis and design of distributed systems with different information patterns is still an open problem. 
Resource constraints that necessitate practical protocols and algorithms, and even fundamental 
challenges in control theory such as delays, further complicate this setting. 

Control theory, information theory, optimization and game theory, and graph theory considered aspects 
of these applications in isolation and were able to provide basic limitations such as those captured by 
Bode’s integral formula, Shannon’s information transmission, Myerson-Satterthwaite’s result on 
bilateral trade, and the spectral theory of graphs. However, no general analysis framework exists that is 
capable of addressing the interplay of these factors. In fact, the very paradigms for control and 
communication systems are incompatible. For example, although information theory has focused on 
zero-error transmission with possibly large delays, control systems tend to be very sensitive to delays 
while being less sensitive to static and dynamic errors—both consequences of the use of feedback. Even 
in the context of a single agent, the interplay between the physical space (where the agent is expected 
to perform) and the information space (which is described by the ability to communicate) when the 
agent has limited resources and when the success of communication depends on the actual dynamical 
behavior is still to be investigated. A network of such cooperating agents creates an even more 



challenging set of problems in terms of the fundamental limits. Finally, a network of autonomous agents 
that have possibly conflicting interests is still more difficult to analyze and coordinate. 

The results presented in this section provide insight into the fundamental performance limits of decision 
networks. Some of these limitations arise from dynamics of the decentralized nature of the system and 
others from the agent’s uncertainties about the system, in part due to delay and channel rate 
limitations. 

Single Agent: The Value of Side Information in Static Decisions 

The network can often be part of the overall design of a system. In complex applications such as 
transportation systems or the power grid, which involve humans in the loop, it is critical that only select 
information be communicated to the decision maker. Otherwise decisions will be delayed substantially 
until the decision maker sorts through the massive data sets. In short, information must be compressed 
and filtered so that only the information that most influences decision making is communicated. Also, 
because gathering, transmitting, and storing information can be costly, the minimum amount of 
information that is required to reach a certain level of performance should be determined. 

To begin to understand the relationship between information type, information quantity, and decision 
making, consider a simple but prototypical problem: a single agent traversing the shortest path of a 
graph [1], [2]. Although only a single agent is considered, the information on which this agent bases its 
decisions—uncertain, intermittent, partial information about traversal delays along different edges—is 
analogous to the problems that would be faced if such information were being communicated by 
distributed sensors over an imperfect communication network. Information-theoretic bounds and other 
results from the single-agent scenario carry over to networked decision systems. 

The standard stochastic shortest-path problem can be described briefly as follows. An agent wishes to 
traverse a graph along the shortest path in that graph. The delays on the edges are random (with a 
known distribution), and the agent may or may not know some information about the edge delays in 
advance of choosing a path. Now if the agent has limited resources with which to gather information 
about the edge delays in advance of its travel (for example, it has a limited budget for purchasing 
sensors), relevant questions in this context are: What types of sensors should the agent purchase, and 
on which edges should the agent place the sensors to best improve its overall performance? Beyond 
shortest-path optimization, we may more generally seek to provide a simple, intuitive framework for 
studying decision making under limited information conditions as well as to provide algorithms that 
(sub)optimally allocate information resources (such as sensors or bandwidth) to best improve the 
agent’s performance.  

In this static, centralized, and performance-centric setting, the optimal information is not characterized 
by mutual information quantities or bit rates, but rather as a measure of the degree to which that 
information is concentrated to the agent’s decision subspace (termed the actionable information). In 
particular, the agent uses the information to estimate the edge delays, and the variance of this estimate 
in a particular subspace is the sole determinant of the agent’s performance [1]. In fact, the agent’s 
overall estimation error is irrelevant and can be arbitrarily high. Furthermore, under certain conditions, 
a practical scheme exists by which the agent can guarantee that the information it receives is 
concentrated (that is, without additional processing) to its actionable component: place all sensors to at 
most two paths of the graph. Generally, this scheme may contain some irrelevant information, but the 
performance resulting from this configuration can be shown to be acceptable. 



This setting can be further generalized to a quasi-dynamic setting [2] where information is gradually 
revealed to the agent as it traverses the graph. In this case, the actionable information changes with 
each step the agent takes. If future information is reconcentrated to these subspaces, the agent’s 
performance can be shown to further improve. However, if the information is blindly broadcast, the 
agent’s performance can only degrade.  

Designing a network with limited capacity to support decision making brings to light important research 
questions that generalize this framework:  

 Inclusion of dynamics: The amount of actionable information determines the agent’s 
performance. How can this notion be generalized in a non-performance-centric setting where 
the agent has dynamics and is concerned with stability?  

 Algorithms for computing the actionable information set: The actionable information was shown 
to correspond to a subspace in the single-agent shortest-path problem. In more general settings 
with nonlinear objectives and multiple agents, the actionable information set may not have such 
a simple characterization. Can general techniques be developed for efficiently approximating 
the set of actionable information in this case? 

Single Agent: Stability and Asymptotic Performance Under Communication Constraints 

Understanding the fundamental limitations of performance in a feedback system is critical for effective 
control design. Substantial progress has been made in this direction, addressing questions of stability 
and performance tradeoffs in feedback systems. One of the most powerful results capturing 
performance tradeoffs in a stable linear feedback system is Bode’s integral formula [3], which captures 
performance limitations in terms of the unstable modes of the plant. 

In the context of centralized control under communication constraints, generalizations to this result as 
well as other results were obtained using information-theoretic concepts. For example, research has 
shown that the minimum bit rate through a discrete, error-free channel between the plant and 
controller that is required to stabilize a linear system is expressed purely in terms of the unstable modes 
of the plant [4], [5]. Furthermore, practical communication schemes can be developed that provide that 
base rate. A performance-centric variation of this problem is considered where the plant and controller 
have perfect communication but track a reference that is communicated over a channel [6]. Further-
more, the controller is to provide good model-matching performance subject to this limited reference. 
Research shows that there is an inherent tradeoff between communication delay and performance 
which forces the design of the encoder/decoder and the controller to be performed simultaneously [6].  

In the two cases above, communication constraints were treated as bit-rate constraints on a discrete 
channel. A different representation for communication constraints is considered whereby a 
communication channel between the plant and controller is characterized solely by its capacity [7], [8]. 
A nonclassical analysis using information-theoretic quantities is used to examine the flow on entropy in 
the feedback loop as a means of obtaining fundamental asymptotic performance limitations. The result 
is a generalization of Bode’s integral formula that provides conditions under which this limit can be 
improved by using side information.  

To apply an entropy-flow analysis, properties of the controller must be characterized in terms of 
information-theoretic constraints. The causality of the controller and overall stability of the plant are 
expressed, respectively, in terms of a mutual information equality and a variance constraint [7], [8]. 



Generally, such abstract representations of the system allow for an asymptotic analysis that can reveal 
fundamental performance limits.  

Although these results bridge the gap between control and communication, much remains to be 
explored. Following are some interesting open problems:  

 Notions for information: What is the correct notion of “information” when communication 
supports a decision system? The notion of information captured by Shannon in point-to-point 
communication is not adequate in this setting. In the context of channel coding, block codes 
perform optimally in transmitting a message with small probability of error; however, such 
codes can be detrimental to a control system due to large delays.  

 Tradeoff between bit rate and delay: How do we address the interplay between control and 
communication? The summary above assumes that the system dynamics are decoupled from 
the communication channel. In many situations, the bandwidth or capacity of the channel 
depends directly on the state of the underlying dynamic systems, such as in a mobile system 
where the communication depends on its actual physical location. Since the mobile system can 
choose to deploy itself at a particular location, the power consumed is shared with the power 
available for communication. Such examples where communication directly interferes with the 
control strategy are not very well understood. 

Network of Cooperating Agents: Decentralized Computation Under Communication Constraints 

We now move beyond the centralized decision maker setting to a decentralized setting, specifically 
decentralized decisions over unreliable networks. Examples of such networks include ad hoc wireless 
networks, satellite networks, and noisy social and human networks. Such networks can severely limit the 
capabilities of decision makers as their ability to estimate the underlying states of the systems is limited 
by the ability to faithfully communicate with the other agents in a timely fashion. The research objective 
is to characterize the fundamental limitations and capabilities of such networked systems by deriving 
performance bounds that are functions of the underlying topologies of the networks, the capacities of 
the communication links, the dynamics of each node, and the computational and storage resources 
available to each node.  

When nodes can have unlimited computational power, research has shown that the conductance of the 
network graph—a measure of how “well knit” the graph is—plays a critical role in characterizing the 
performance of consensus-type problems where nodes are trying to compute a function of a set of 
initial values that are distributed over the network [9]. In particular, the time needed for each node to 
compute an accurate estimate of its function scales as the inverse of the conductance. For example, a 
ring network that communicates with neighbors with probability 1/4 scales as the inverse of the number 
of vertices, which implies a linear growth in convergence time for the estimates. Networks that 
communicate with all agents with the same probability have no bottlenecks and their conductance is 
constant regardless of the network’s size. For example, the preferential model of the Internet has this 
property, which indicates that the Internet is a good medium for distributed computation. Another 
example of such a network is the ad hoc wireless model of Gupta-Kumar [10], which allows two wireless 
devices to communicate simultaneously only if they are outside a disk of a certain radius (this is often 
referred to as the disk model). In this case, the computation can be obtained accurately at a rate not 
faster than the square root of the number of vertices.  



A natural generalization of this framework is one where evolving functions need to be communicated. 
This problem is further complicated in the realistic case of agents having dynamics. For example, if 
agents communicate with other agents over channels with capacities that depend on their locations and 
resources, the graph connecting them may change dynamically. Putting aside the agent’s own dynamics, 
the stability of the distributed function estimation itself is put in danger as the graph changes.  

Previous work has also explored some of the mechanisms for computation in the presence of varying 
time delays and changes in network connectivity [11], [12], but only relatively simple operations such as 
consensus protocols have been fully explored. Conversely, some work has been done in maintaining 
robust communications topologies, but without regard for the most effective utilization of network 
resources or the details of the desired information flow and possible effects of latency. These problems 
are particularly difficult in the case where local decisions are made at the network’s nodes, requiring 
global properties to either be represented in a distributed fashion or estimated by individual nodes 
(including receivers and transmitters in the network). 

In addition to the above, further research areas include: 

 Architectural limitations on distributed problems: Consider, for example, a network where 
agents can only communicate their decisions (or the values of the functions they are 
computing). In this context, we think of these functions as utilities. Communicating utilities gives 
only aggregate information about the underlying state of the system and imposes severe 
limitations on the ability to learn the state. How can these limitations be characterized? 

 Robustness: In this regard, it may be beneficial to search for the right topology (or metric) on 
the set of graphs that is amenable to perturbation analysis. Under what perturbation conditions 
is asymptotic estimation possible? 

Network of Competitive Agents: Information Aggregation and Asymptotic Learning 

Social networks are attracting substantial attention within the research community. In particular, a 
tremendous opportunity exists for bringing in quantitative tools to analyze the formation of such 
networks as well as to study the impact of such networks on decision making. What differentiates such 
networks from standard decentralized networks is the human presence. A question that arises in the 
investigation of networks with human actors is how game-theoretic interactions modify the well-known 
existing results on dynamic aggregation of decentralized information over networks with non-
autonomous agents (for example, see the literature on consensus [13]-[17]).  

Results have been reported that begin to address this framework [19]. They show that when selfish 
agents are sequentially detecting an underlying binary state of the world, information may not 
aggregate properly. The loss of collective wisdom is due to the “herding” phenomenon often witnessed 
in technology and fads. A realistic framework for learning in a multi-agent system must model the 
structure of social networks with which individuals observe and communicate with each other; however, 
such generalizations turn out to be challenging to analyze. One difficulty with this class of models is that 
to determine how beliefs will evolve, we need to characterize the perfect Bayesian Nash equilibrium, 
which involves rather complex inferences by individuals. To this end, we will consider a simplified model 
where the agents observe the actions of a neighborhood of individuals that are randomly chosen from 
the entire set of past actions of this neighborhood. Although actual social leaning can involve very 
complicated dynamics not captured in this simplified model, it does provide a first-order approximation 



for which definitive statements can be made, and the fundamental limitations of this model may hold in 
more complicated models. 

More recent work addressed this problem and established exact conditions under which herding is 
impossible [20]. In this work, these effects are captured in terms of characteristics of the graph’s 
interconnectedness and the properties of the underlying random process. In particular, under certain 
conditions, an excessively influential group can emerge within a social network if interconnectedness 
among individuals is not rich enough.  

These results consider an idealized situation where all agents have the same utility and where there is 
an absence of disruption. Furthermore, they only address asymptotic learning as the size of the network 
increases. Hence, several interesting research directions in this field have not been pursued or have 
provided only partial results:  

 Sequential decisions and feedback: Analysis was simplified by allowing agents to fix a decision 
once it is made, but repeated decision making better reflects real-world dynamics. How do 
repeated decisions and endogenous sequencing of actions affect asymptotic learning over time?  

 Perturbations: The influence of external effects (such as media, injecting outside agents, 
changing the network topology) on the propagation of beliefs is relevant because such outside 
effects can serve as either control inputs or as adversarial influences on the system. For 
example, what types of networks allow a “reversal” in the beliefs of individuals?  

 Forward-thinking agents: In social learning models studied to date, individuals care only about 
their immediate payoffs. What general approach should one take toward analyzing the perfect 
Bayesian Nash equilibrium in the case where agents’ payoffs depend on the future decisions of 
other agents?  

Broad Considerations in Decision and Communication Networks 

The natural generalizations considered for each of the previous works seem to quickly lead to common 
problems of high importance. Although the specifics of these problems still vary (each has different 
objectives and algorithms), a general analysis framework could be established that can be used to derive 
fundamental performance limitations. Below we discuss several research areas that may be helpful in 
developing such a framework. 

 Network separation principle: The separation principle from classical control theory offers 
conditions under which a feedback control signal cannot improve the controller’s estimate of 
the plant’s state. When it applies, the optimal performance of the system can be directly 
analyzed by constructing an optimal estimator and controller. However, if these conditions are 
not met, even a simple feedback system can have a complex optimal controller. Under what 
conditions are system uncertainties independent of the agents’ decisions? A “degree of 
separation” may be useful in establishing approximate results in this challenging area. 

 Dynamic notions for actionable information: In learning and centralized-feedback control, an 
entropy-flow analysis was used to study the dynamic exchange of information between agents. 
The results were algorithmically free, asymptotic fundamental limits for performance. However, 
in the performance-centric setting of shortest-path optimization, it was the amount of 
information concentrated to the actionable subspace of decisions that affected the quality of 



Selected recommendations for research in networked decision systems: 

 What is the correct notion of “information” when communication supports a decision 
system, and how do we address the interplay between control and communication? 
Fundamental problems of analysis and design in cases where communication directly 
interacts with the control strategy need to be investigated. 

 Our understanding of the fundamental limitations and capabilities of decentralized 
networked systems under uncertainties is incomplete. Performance bounds that are 
functions of the underlying topologies of the networks, the capacities of the communication 
links, the dynamics of each node, and the computational and storage resources available to 
each node would be useful for many applications. 

 Connections with game theory are an important research area, with several open problems.  
For example, how do repeated decisions and endogenous sequencing of actions affect 
asymptotic learning over time in a game-theoretic network of competitive agents? 

decision making. In a dynamic setting, does there exist a similar set to which information should 
be concentrated and that changes over time? How should agents track it? The flow of actionable 
information content over the network may yield tighter, more useful fundamental limits than 
entropy flow alone. 

 Representations for abstract computation: An effort to link decision making to information flow 
may require developing a representation for algorithms in the language of information flow. In 
the case of a centralized-controller feedback system, causal, stabilizing controllers can be 
represented by imposing information-theoretic constraints on the feedback system. Can such 
formulations be extended to decentralized and nonlinear settings? Additional constraints that 
may be useful to develop are those that capture limited computational capability.  

 Representations for communication: The notion of information captured by Shannon in point-
to-point communication is not adequate for analysis. As noted earlier, although block codes 
perform optimally in the context of transmitting a message with small probability of error, such 
codes can be detrimental to a control system due to large delays. How can we efficiently 
represent causality across a network with many information flows? Notions of mutual 
information and information rates do not completely capture the interactions of multiple causal 
dependences.  

 Robustness to perturbations: Perturbations in network topology, computation, or 
communication may propagate errors throughout the network that can degrade performance 
or, worse, result in positive feedback loops in the system that may amplify the effect of the 
errors, destabilizing the system. To illustrate the types of perturbations that need to be specially 
considered in dynamic agent networks, consider the case where the interaction between the 
agent’s dynamics and the graph are carefully designed, but a time-varying perturbation in the 
graph results in a transient cycle in information flow. If the network is a Bayesian learning 
network, these cycles may destabilize learning. Even in the simplest case where the dynamics of 
the nodes can be modeled as linear input/output systems (including time delays), the static 
graph structure is known to be crucial for determining its overall stability [21].  
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