
IEEE Report
Open virtual and remote labs for Control Education

S. Dormido, J. Chacón, J. Saenz, L. de la Torre

Universidad Nacional de Educación a Distancia, Madrid, Spain.

e-mail: {sdormido,ldelatorre}@dia.uned.es,{jchacon,jsaenz}@bec.uned.es

March 2018

Contents

I Report 1

1 Introduction 2
1.1 Approach . 3

2 Design 4
2.1 Hardware . 5
2.2 Sensors . 7
2.3 CAD Software . 8
2.4 Design and construction of the server software . 9

2.4.1 Hardware interface . 10
2.4.2 Datalogging . 11
2.4.3 Communication . 11
2.4.4 Control . 12

2.5 The Virtual and Remote Lab . 12
2.6 Discussion . 13

3 Activities 14
3.1 Implementing the controller . 16
3.2 Control Strategies . 16

3.2.1 PI . 16
3.2.2 PI-CI . 17
3.2.3 PI2D . 17
3.2.4 ROBUST ADAPTIVE HYBRID PI . 17

4 Conclusion and Future Work 17

1

Part I

Report

1 Introduction

Control engineers need to have both a wide experience implementing solutions in real problems, plants
and processes and a deep understanding of the mathematics and theory that lie behind these solutions.
Therefore, reaching a balance between theoretical proofs and physical intuition is a major challenge
in control education. Lab experimentation plays a key role as a way to connect theory and practice
[7, 22]. Among others, lab experience serve as [2]:

• An introduction to real world modeling and/or control issues, such as uncertainties, saturation,
noise, sensor/actuator dynamics, etc.

• A demonstration or validation of analytic and theoretical concepts.

• A way of providing facility with instrumentation and measurement tools.

• Activities for problem solving and team learning.

• A motivational activity.

• A way to develop professional practices, including maintaining engineering notebooks and report
writing.

On the downside, traditional hands-on labs entail high costs related with space requirements,
equipment, and maintenance staff [17]. For the last twenty years, there has been a line of research that
looks for reducing lab costs by taking advantage of the Internet, i.e., by replacing hands-on labs with
online ones. Depending on the nature of the resource (the plant/process) an online lab can be either
virtual or remote [14]:

1. A remote lab is a real plant that can be accessed through the Internet. Students remotely operate
and control a real plant through an experimentation interface.

2. A virtual lab is similar to the previous one, but it replaces the physical system with a mathe-
matical model.

Usually, the approach when setting up a new remote laboratory on control is to start from an
already working hands-on experiment, and then enable a way to accessed it from a remote computer:
an attractive graphical user interface, security access control, etc. There are many examples of this
approach in literature ([4, 12, 6, 13, 20, 15, 8, 27]). Commercial control experiment systems, however,
are expensive, tend to be large and heavy, and in many cases are not very flexible. On the contrary, the
teaching needs are subject to changes. For example, a teacher may want to use the system in a level
different than the one it was originally designed for. There are many experimentation systems which
lack of use after some years, despite the economical investment. Certainly, after investing hundreds
(or thousands) of euros in equipment, it is not easy to discard it simply because it does not fit exactly
with our needs.

2

One of the goals of this work is to provide a complete open-source and open-hardware remote lab
solution that is low-cost and easy to replicate, so that anyone who intends to build it can use it either
as a ready-to-use system or as a starting point to introduce custom modifications. For that purpose,
there are two essential elements:

• Open-source/open-hardware tools.

• Rapid prototyping technologies. We have witnessed the rise of 3D printing or single board
computers, technologies that fit like a glove to our purposes.

The designs of the 3D printed parts used for building the lab presented in this work are free to use
and modify, so the costs of cloning most of the system’s structural elements is marginal. Moreover,
the designs use components that either can be gathered from old electronics devices or are cheap and
easy to find. Building a control experiment system from scratch is a demanding and time-consuming
task. Sometimes, the use of low-cost components such as sensors or actuators must be compensated
with creativity, or loss of performance. However, looking at the success of many community-driven
open-source projects (RepRap 3D printers (http://reprap.org/), PublicLab (https://publiclab.
org/), Thingiverse (http://www.thingiverse.com/)), it is not unrealistic to think that collaborating
between laboratory designers could really enhance the teaching experience in control engineering as
well as in other areas.

Given the complementary uses of virtual and real experimentation [30, 1, 19], the authors have
also developed a virtual version of the system. This work presents a low-cost virtual and remote lab
implementation of an air levitation system, based on open solutions. It can be easily adopted to be
used as both a remote lab and as a hands-on lab. Air levitation is the process by which an object is
lifted without mechanical support in a stable position, by providing an upward force that counteracts
the gravitational force exerted on the object. In addition to the study of air levitation physics, we
found interesting to create a virtual and remote lab of the air levitation system for three reasons:

• The rapid dynamics makes it specially suitable for experiences with a control lab.

• Due to the system nature, the design can be optimized and, with some precision tradeoff, kept
affordable both in cost and construction efforts.

• The realistic physics of the system are complex and the system is better modeled through an
identification process. However, a simple physics model approximation can also be used and
compared with the behavior of both the real system and the model obtained through the iden-
tification process.

1.1 Approach

Recently, low cost single board computers such as Raspberry Pi or Beaglebone Black, and 3D printing
technologies, which allow for rapid prototyping of mechanical systems, have become pervasive. These
tools provide an interesting framework that can assist the creation of remote labs. The hardware
framework is complemented with reusable software components, a web-based architecture, and stan-
dard communication protocols to reduce the development cost and effort. Based on this paradigm, an
easily replicable remote lab architecture is proposed, using 3D printed parts designs that have been
open source licensed to allow for free use or modification, as well as software components that imple-
ment the different subsystems of the lab, and elements that either can be gathered from old electronics
devices or are cheap and commonly used components.

3

http://reprap.org/
https://publiclab.org/
https://publiclab.org/
http://www.thingiverse.com/

Currently, a virtual and remote lab of an air flow levitation system has been built using the proposed
methodology. It consists of a small object that has to be lifted using the air flow generated by a fan
inside a cylinder. The position of the levitating object is measured with an infrared distance sensor
and it is used to control the rotation speed of the fan. The prototype will be incorporated into a
master degree course in control engineering. Some of the benefits expected from the experience are to
provide students with a global insight of engineering processes, increase their motivation to research
about different sensing technologies, and promote their creativity.

In recent times, it is not unusual that students, even of first courses of engineering, have at least
basic knowledge of the mentioned development platforms, and a good predisposition to use them. In
spite of that, the popularity of 3D printing technologies and the do-it-yourself (DIY) and the maker
community can be an attractive way of drawing the students’ attention. As an example of a similar
approach, some universities already proposed robotic competitions where students are asked to solve
some problems using basic construction kits. These activities, which have demonstrated to benefit
students’ development, are not very different in nature compared to the one proposed in this work.
Therefore, it is expected to obtain great profit from the Air Levitation System not only as a hands-on
lab or a remote lab, but also to have students built their owns, which is a useful experience in itself.

2 Design

The air levitation system presented in this work has a minimalist design, because any increase in
complexity has an effect in terms of cost and effort and the system is meant to be affordable and easy
to replicate. The system is robust enough to work as a remote lab. It is composed of a cylinder in
which a forced air flow is used to lift a small object levitating on a desired position (Figure 1).

Before describing the design and construction of the plant, it is worth to mention that the low
cost and optimized design of the system enables two different approaches. Usually, the laboratory
creator/maintainer build the system, remote lab, and any other resource needed. Another approach is
to let students build their own systems, so they can get a learn-by-doing understanding of a thorough
engineering process. Converting an idea or a concept to a practical solution is essential in engineering.

The construction of the system has been decomposed in several tasks:

1. Design of the experience;

2. Design and construction of the plant ;

3. Design and construction of the server software;

4. Creation of the graphical user interface (GUI).

The structure is simple on purpose, there are only a few elements: a methacrylate tube with a nozzle,
at one end, coupled with a blower fan. Both elements are supported by an open and movable stand,
which let the air flow into the fan. The system has been built using only the following components:

• A methacrylate tube.

• A small and light object.

• 3D printed parts.

• A single-board computer (Beaglebone Black)

4

(a) (b)

Figure 1: The Air Levitation System in a) a demo session at exp@at’17, and b) the authors’ laboratory.

• An infrared distance measuring sensor (PIR).

• A PC fan.

• Some discrete electronic components and a printed circuit board (PCB).

• A webcam.

All the design files, documentation about the system and instructions about how to build and setup
a new replica is freely available on https://github.com/jcsombria/OpenHardwareLabs.

2.1 Hardware

Since the release of the first Raspberry PI model, a bunch of single board computers have appeared
intending to fit developers needs, which range from small do-it-yourself (DIY) projects such as home
media centers or domotic appliances, to high performance research computing. Most of these boards
are specifically focused on the maker community, students and educators, so they are fully open-source
hardware.

An interesting feature of these single-board computers is their ability to run a complete operat-
ing system (OS). As an example, a Raspberry PI can run several Linux distros (Raspbian, Ubuntu,
LibreElec, etc.), Windows 10 IOT Core, or RISC OS, immediately opening an universe of possible
applications: it is easy to set up a web server, enable remote connections through Secure Shell (SSH)
or even graphical sessions, or use many different programming languages to develop our project. Fur-
thermore, the integrated input/output (IO) capabilities through general purpose input/output (GPIO)

5

https://github.com/jcsombria/OpenHardwareLabs

pins: digital IO, interconnection protocols (SPI, I2C, etc), or AD converters makes easy (and afford-
able) to build electronics systems, even if not an expert in the subject.

These single board computers tend to provide similar performance. The most popular ones, like
Raspberry PI or Beaglebone Black, are based on an ARM architecture, presenting differences like the
RAM size, input/output capabilities or wireless connectivity. For example, Raspberry PI provides
digital IO, SPI, UART, and I2C connectivity, but it does not have integrated analog IO. On the
contrary, Beaglebone Black has analog IO but does not provide built-in WiFi or Bluetooth. Table
1 summarizes the capabilities of four representatives platforms, covering a wide range of costs and
functionalities.

Onion omega 2 Raspberry PI 3 Beaglebone
Black

Intel Galileo
(Gen 2)

Cost1 20e 35e 50e 75e
SoC 400 MHz MIPS

24Kc Big-Endian
Processor

Broadcom
BCM2837

ARM Intel Quark
SoC X1000

RAM 64MB DDR2
(400Mhz)

1GB LPDDR2
(900 MHz)

512MB DDR3L
(800Mhz)

256MB DDR3
(800Mhz)

Wireless WiFi WiFi, Bluetooth n/a2 n/a
GPIO UART, SPI, I2C,

PWM, digital IO
UART, SPI, I2C,
PWM, digital IO

UART, SPI, I2C,
CAN, PWM, dig-
ital IO, A/D in-
puts

UART, SPI, I2C,
JTAG, PWM,
digital IO

Ports Universal Se-
rial Bus (USB),
WiFi, (more
options availaible
with expansion
boards)

HDMI, 3.5mm
analogue audio-
video jack,
4xUSB 2.0, Eth-
ernet, Camera
Serial Interface
(CSI), Display
Serial Interface
(DSI)

HDMI, USB,
Ethernet

USB, PCIe, Eth-
ernet

Table 1: Comparison of low-cost development platforms.

The air levitation system presented in this work is controlled by a Beaglebone Black board, running
a GNU/Linux distribution. The choice of this board for developing the air levitation system was based
on several reasons, namely:

• All boards ship with the Debian GNU/Linux image. This image comes with pre-installed soft-
ware tools and, in particular, it provides the Node.js runtime and the Cloud9 IDE (Integrated
Development Environment). Also, the bonescript library (included in the Node.js installation)
provides an Arduino-like application programming interface (API) to access the GPIO, so any
person with previous experience in Arduino finds a soft learning curve.

• The GPIO provides analog inputs that can be used to acquire the sensor measures, and PWM
outputs to control the fan and the servo of the air levitation system.

6

• The board have and on-board eMMC memory, eliminating the need of an external SD card
memory.

• There is an active development community. The Beaglebone boards have good hardware/software
support and it is easy to find documentation, guides, etc.

It is important to highlight that, while the Beaglebone Black is used in our experimental setup,
the other alternatives not only are also suitable but they are entirely compatible with the software and
hardware described in the next sections. In fact, since the boards have USB ports, they even can be
connected to Arduino boards or other peripherals to add compatibility, reuse other designs or extend
the capabilities of the board.

The Beaglebone Black board provides built-in A/D converters to read analog signals. Since the
range of the voltage signal provided by the sensor (PIR) lies outside the one admitted by the analog
inputs of the board (0, 1.8V), it must be adapted before being connected. Similarly, the actuators (fans)
require voltages and currents that can not be directly handled by the board, so a signal conditioning
circuit has to be used.

Most structural elements have been printed in a Prusa Mendel i3 3D printer, a very popular and
affordable RepRap printer, available at the authors’ department. The 3D parts has been modeled with
FreeCAD.

2.2 Sensors

To measure the position of the ball, several possibilities were considered: visual recognition, ultrasonic
sensors, and infrared sensors. While it is interesting to use a video cam to get the ball position, and
even could be adequated for teaching in an image processing subject, the complexity and cost of the
system would increase, so it was discarded. With respect to the ultrasonic distance sensors, they are
a valid alternative as the infrared ones, similar in cost and complexity. However, the latter option was
finally chosen. The position of the ball is measured with an infrared beam sensor, particularly a Sharp
GP2Y0A21YK0F Analog Distance Sensor (Sharp Corporation), which can obtain measures between
10 and 80 cm. There are other similar models that are electrically compatible and have different
ranges, as the GP2Y0A21YK0F (4-30 cm) and the GP2Y0A02YK0F (20-150 cm), so it can be chosen
to adapt to different tube lengths. All the aforementioned sensors are analog, yielding a signal roughly
in the range (0-5 V), which is proportional to the inverse of the distance measured. The sensor is
composed of two IR LEDs, an emitter which projects a light beam, and a receiver that measures the
bounce in the detected object. Since the sensor actually measures the light reflected by the object,
it may be affected by the color, shape and movement of the object. Also, it has an update period
of approximately 40 ms. These aspects must be taken into account to get a reliable measure. The
BeagleBone Black Board has analog inputs which admit a value in the range (0-1.8 V), so the sensor
output has to be adapted to that range, which can be done with an op.amp. based circuit. Figure 2
shows the calibration curve corresponding to the GP2Y0A21YK0F sensor.

Since, as mentioned before, the actual map between voltage and position depends on several factors,
the sensor must be calibrated with the working conditions. The calibration process was:

• Fix:

– Measurement range (hmin = 20 cm ¡ h ¡ hmax = 40 cm).

– Measurement interval (h = 1 cm).

7

Figure 2: a) Sharp GPY2Y0A21YK infrared distance sensor and b) voltage vs. distance plot.

• Repeat, for each height (steps of 1 cm):

– Put the ball fixed at a known level.

– Record the sensor voltage for t seconds.

– Calculate the mean voltage value and store vi → hi.

In a first approximation, there was a problem with a local minimum. Looking at the curve of
Figure 2b, it can be seen that for very short distances the voltage grows until around 3 V, and after
that it monotonically decreases until the maximum distance. That was not the case of the measured
response, which decreased at around 15 cm, after that increased until 20 cm, and finally it decreased
again. It was a very problematic issue because, in order to avoid that unwanted behaviour, the
operating would have to be drastically decreased. After detecting that the strange response was due
to the reflection on the tube, the solution adopted was to add two coloured strips inside the tube.
Figure 3a shows a plot with the measured voltage vs. distance, and the table in Figure 3b contains
the voltage ranges corresponding to some distances.

2.3 CAD Software

Computer Aided Design (CAD) tools assist the designer to model the physical components which will
be part of the system, in our case the structural parts and the electronics circuits. It is out of the scope
of this work to discuss the pros and cons of the so many options available. However, it is worth to
mention at least some of the most popular open-source alternatives that cover the lab needs: FreeCAD,
OpenSCAD, KiCad EDA.

FreeCAD is an open-source 3D CAD software tool very popular among the 3D printing community.
It has many features, parametric design, multiplatform (works on Linux, Windows and Mac), a fully

8

20 40 60 80 100 120
height (cm)

1.0

1.2

1.4

1.6

1.8
vo

lta
ge

 (c
m
)

height voltage
20 cm 1.92± 0.014 V
22 cm 1.88± 0.014 V
24 cm 1.82± 0.015 V
26 cm 1.77± 0.016 V
28 cm 1.71± 0.017 V
30 cm 1.61± 0.021 V
32 cm 1.54± 0.023 V
34 cm 1.45± 0.015 V
36 cm 1.38± 0.022 V
38 cm 1.26± 0.024 V
40 cm 1.15± 0.027 V

Figure 3: a) Measured voltage vs. distance, and b) measured voltage ranges for some distances.

customizable GUI, and native support for python scripting and extensions.
OpenSCAD is another popular tool, mostly used to design 3D printed parts. Unlike FreeCAD,

it uses a non-graphical with a different modelling approach. It is based on a specific description
language, so the creation process is more similar to traditional programming. One of the advantages
of this approach is the flexibility to parameterize designs.

The electronic circuits and the PCBs has been created with KiCad EDA (http://www.kicad-pcb.
org), a multiplatform and open-source tool that have the support of the CERN, which started the
KiCad EDA project and have made important contributions to it as part of the Open Hardware
Initiative (OHI) 3.

As in the case of 3D printing, there are many PCB manufacturers where you can send your circuit
design and have your PCB with professional quality and a moderate cost or, following the maker
paradigm, you can build your own circuit with a computer numerical control (CNC) PCB milling
machine or a chemical etching process.

2.4 Design and construction of the server software

The software in the target computer must implement several capabilities, including: Hardware inter-
face, Datalogging, and Communication and Control subsystems.

The overall picture of the system is represented in Figure 4a,b shows a detailed diagram with the
RIP software architecture. The implementations of the aforementioned subsystems map to several
Node.js objects, which interact to provide the desired functionality, as follows:

• The hardware interface is implemented in Node.js by the object BoardInterface, which provides
a common interface to access the boards, and the boards objects actually implementing the low-
level communication. At the moment, only the Beaglebone Black and Arduino boards have been
implemented, but there will be support for other boards in the future. These objects provide
several methods to work with the hardware.

• The datalogging is implemented by the Node.js singleton object Datalogger, which gathers the

3https://home.cern/about/updates/2015/02/kicad-software-gets-cern-treatment

9

http://www.kicad-pcb.org
http://www.kicad-pcb.org
https://home.cern/about/updates/2015/02/kicad-software-gets-cern-treatment

Figure 4: a) Overall view of the system, and b) RIP software architecture.

important data and sends it to the database server. Currently, the data can be logged to a local
file or sent to an InfluxDB server.

• The communication is implemented in Node.js by the object JsonRpcServer, which provides
basic functionality to create a JSON-RPC 2.0 server, and RIPServer, which makes use of the
former to implements the API of the Remote Interoperability Protocol (RIP). These approach
can also be used to easily define new protocols or adapt to other implementations.

• The control subsystem is implemented by the object RealTimeLoop, which defines the controller
implementation.

Since the server software has been designed to be reconfigurable, there will be diferent implementations
of some of the subsystems. In particular, the hardware interface is obviously highly dependent on the
hardware, so in case a different board is used, a new implementation of that part would be needed.
To specify which particular implementation should be used, there is a configuration file that allows to
create the experiment by interconnecting components, defining the input and output, transport type,
etc. As an example, the configuration of the Air Levitation experience is shown in Figure 5.

The flexibility of the software allows to interoperate with other solutions. One of the reasons to
choose Node.js was because it can be easily extended to add new functionality. For example, there are
library modules that implement solutions like Profibus, Modbus, MQTT, and many others protocols,
and which could be incorporated to our architecture, thus expanding the interoperability.

2.4.1 Hardware interface

The hardware interface purpose is to read measures from the sensors, and send values to the actuators.
Though it is obviously very platform dependent, it is a good practice to use standard libraries and
protocols. For example, the Arduino API is widely used for its simplicity and it has been exported
to other hardware, like the Beaglebone boards or Raspberry PI. The functionality to be covered can
usually be reduced to read and write digital or analog input and outputs.

10

1 var conf = {
2 s e r v e r : {
3 r i p : ’RIPServer’ ,
4 t ran spor t : ’HttpServer’ ,
5 } ,
6 board : {
7 r e qu i r e : ’BeagleBoneBlackBoard’ ,
8 name : ’Beaglebone Black Board’ ,
9 va r i a b l e s : [

10 { ’name’ : ’ball_height’ , ’pin’ : ’P9_36’ , ’type’ : ’in’ } ,
11 { ’name’ : ’fan_control’ , ’pin’ : ’P9_14’ , ’type’ : ’out’ } ,
12 { ’name’ : ’servo_control’ , ’pin’ : ’P9_22’ , ’type’ : ’out’ } ,
13 { ’name’ : ’setpoint’ , ’type’ : ’in_out’ } ,
14 { ’name’ : ’kp’ , ’type’ : ’in_out’ } ,
15 { ’name’ : ’ki’ , ’type’ : ’in_out’ } ,
16 { ’name’ : ’kd’ , ’type’ : ’in_out’ } ,
17] ,
18 } ,
19 }
20 var App = requ i r e (’./GenericApp’) ;
21 App . i n i t (conf) ;
22 App . s t a r t () ;

Figure 5: Configuration File

In the Air Levitation System, the hardware interface task is accomplished using the bonescript
library, which basically mimics the Arduino API to cope with Beaglebone and the GPIO pins of the
board. There is a real-time loop implementing the time critical actions: read sensors, update the
controller and write outputs. Technically, it is not actually real-time, because currently it is not
supported by the Node.js bonescript library. But for the time scale of the system, which is sampled
at a 100ms rate, it performs correctly. In case hard real-time is needed, there are other alternatives
(such as C++) supported by the Beaglebone board.

2.4.2 Datalogging

Once the values have been acquired, it is needed to store them in order to be accessed whenever be
required. For that purpose there are many options, but again it is recommended to use a standard
solution. There are time series database systems (TSDB) that are specialized on time series manage-
ment, such as InfluxDB, graphite, OpenTSDB or RRDtool. The datalogging capabilities have been
separated into a low priority task that periodically dumps measures and control actions to a database,
so the data is stored and can be accessed to perform off-line processing of past sessions.

2.4.3 Communication

The server software, running at the target platform (the single-board computer) must provide an
API to interact with the system. The Remote Interoperability Protocol (RIP) has been proposed
to interconnect engineering systems with user interfaces. It is a simple API based on the JSON-

11

RPC 2.0 protocol which is human-readable and can be easily integrated with JavaScript applications,
as it uses the JavaScript Object Notation (JSON) to encapsulate remote procedure calls (RPC). The
communication subsystem to make the server functionality accessible from outside of the lab computer
implements the RIP [5], which provides a standard API to control and monitor the hardware. That
basically means that any RIP enabled application can easily interconnect with the server to read and
modify variables and plant parameters, so it is easy to decouple the GUI design from the rest of the
system.

2.4.4 Control

The remote labs have a local controller implemented, which can be as simple or as sophisticated as
needed. In the case of a control engineering lab, it must be a central part of the design, but even
in other cases it is always needed to take some safety measures, to assure that the system cannot be
harmed by accident or by a malicious user. The control subsystem implements a proportional-integral-
derivative PID controller which parameters can be modified and tuned. The control subsystem is
prepare to be extended with more sophisticated controllers without much development effort. More
detailed information is provided in Section 3.

2.5 The Virtual and Remote Lab

EjsS is an open source authoring tool designed to easily create interactive simulations with a GUI for
users with no programming skills. EjsS allows users to create applications in both Java or Javascript.
Many virtual and remote lab (VRL) applications have been developed using EjsS [16, 4, 9, 10, 3, 6,
11, 24, 21, 18, 23] and some of them explicitly define it as a tool that facilitates the development
of applications by researcher, teachers and students who want to focus in the simulation theory and
not in the technical programming aspects [16, 4]. The use of interactive simulations and computer
based modelling for teaching physics concepts is described in [10], and a complete discussion of remote
labs and their benefits for teaching physics and enginering is available in [11]. [6] presents a virtual
and remote laboratory of mobile robots where EjsS is used in combination with LabVIEW (National
Instruments) and MATLAB (MathWorks), and in [16] a new approach to create interactive networked
control labs is described. A remote control laboratory based on EjsS, Raspberry PI and Node.js is
described in [3]. The authors of [24] present an ongoing schema to develop virtual models of physical
setup equipment and their integration into the corresponding remote laboratory. In [21], students
experiment with a set of hands-on exercises about Automatics and Robotics using RobUALab, a virtual
and remote laboratory develoed in EjsS, firstly in face-to-face classes and afterwards accessing the
online experimentation environment. [18] presents the design and implementation of a network for
integrating Programmable Logic Controllers (PLC), the Object-Linking and Embedding for Process
Control protocol (OPC) and EjsS, and [23] presents a set of open-source software tools and low-cost
hardware architectures are proposed that allow an easy access to local or remote sensors and actuators
integrated in EjsS. A systematic approach for developing web-based experimentation environments for
control engineering education is presented in [29].

A nice teaching approach is to provide students with both the virtual and the remote version of
an experiment. Both versions of the air levitation system presented here, share a simple and clean
layout and most of the interface is similar. There is a view of the system on the left (consisting on a
video stream obtained from the laboratory webcam in the remote version and on a 3D model in the
virtual one). Graphs on the right show the evolution of the interesting variables (the height of the
lifting object, the setpoint and the control signal sent to the fan). Finally, there is a control panel at

12

Figure 6: The virtual lab of the air levitation system.

the bottom, which allows modifying some system parameters, as the controller gains or the setpoint,
and the connection buttons, in the remote lab, which are analogous to the simulation execution control
ones, in the virtual lab. Figure 6 shows the web interface of the virtual laboratory, and Figure 7 of
the remote laboratory.

The virtual and remote laboratory can be accessed in an open course in UNILabs (http://unilabs.
dia.uned.es).

2.6 Discussion

Even when the knowledge, money, and time invested in the construction of a remote lab are certainly
not negligible, it is an issue that is usually not addressed in literature. When faced with the decision to
buy an educational system, several questions main arise, such as why would I spent time and effort in
building an experimentation system when I can buy a prebuilt system? Well, there are several reasons

13

http://unilabs.dia.uned.es
http://unilabs.dia.uned.es

Figure 7: The remote lab of the air levitation system.

that can be argued to justify the decision:

• Commercial academic platforms are very expensive and sometimes can be less flexible. However,
they are usually complemented with a curricula of activities, technical support, etc. Building
your own system can be cost-effective and the final product is prone to be enhanced or adapted
to experiences different from the originally thought.

• As mentioned before, the construction process itself is interesting from a didactic point of view.
It can be proposed as an academic activity, if not from the scratch, dividing into smaller tasks
or with some guidelines so students can addressed the activity.

In table 2, an estimation of the cost is provided in working time (hours) and money (e). The first
group correspond to the inital design phase, which is the most difficult and laborious. Here, the results
have been measured from the air levitation system developing process. The second group would be
the effort needed to replicate and existing design and adapt to our specific needs. The time estimation
was calculated as the mean time needed by 5 people which were given the design resources and told
to build the system.

3 Activities

Up to this point, the platform is ready to experiment and carry on learning experiences. As a demon-
stration of capabilities, the next paragraphs present an activity which consists in the implementation,
test, and comparison of different PI controllers.

14

Time Cost

Software 200h n/a
Structural parts design 60h n/a

Assembling 10h <100e
Lab Software Design 40h-100h n/a

Table 2: Cost & Time Estimation

Listing (1) PID controller implementation in
Arduino

1 f loat PID : : update (f loat y) {
2 f loat kp = params [0] , k i = params [1] , kd =

params [2] ;
3 f loat I = s t a t e [0] , e prev = s ta t e [1] ;
4 f loat e = sp − y ;
5 f loat P = kp∗e ;
6 f loat I p r ev = I ;
7
8 I += (k i∗e) ∗ (per iod /1000 .0) ;
9 f loat v = u0 + P + I ;

10 // C o n d i t i o n a l i n t e g r a t i o n
11 f loat u = sat (v , 0 . 8 , 1 . 0) ;
12 i f ((u − v) ∗ e < 0 . 0) {
13 I = I pr ev ;
14 }
15 s t a t e [0] = I ;
16 s t a t e [1] = e ;
17 return u ;
18 }

(a)

Listing (2) PICI controller implementation in
Arduino

1 f loat PICI : : update (f loat y) {
2 f loat kp = params [0] , k i = params [1] , pr =

params [2] ;
3 f loat I = s t a t e [0] , I c = s t a t e [1] , e prev =

s ta t e [2] ;
4 f loat e = sp − y ;
5 f loat P = kp∗e ;
6 I += (k i∗e) ∗ (per iod /1000 .0) ; // I
7 Ic += (k i∗e) ∗ (per iod /1000 .0) ; // I c
8
9 f loat v = u0 + P + (1−pr)∗ I + pr∗ I c ;

10 // C o n d i t i o n a l i n t e g r a t i o n
11 f loat u = sat (v , 0 . 8 , 1 . 0) ;
12 i f ((u − v) ∗ e >= 0 .0) {
13 s t a t e [0] = I ;
14 s t a t e [1] = Ic ;
15 }
16 // R e s e t
17 i f (e prev ∗ e <= 0) {
18 s t a t e [1] = 0 ;
19 }
20 s t a t e [2] = e ;
21 return u ;
22 }

(b)

Listing (3) PI2D controller implementation in Ar-
duino.

1 f loat PID : : update (f loat y) {
2 // r e a d t h e pa rams
3 f loat kp = params [0] , k i = params [1] , d e l t a =

params [2] , d e l t a I = params [3] ,
4 u f f = params [4] ;
5
6 // r e a d t h e s t a t e o f t h e p r e v i o u s i t e r a t i o n
7 f loat I = s t a t e [0] , e l a s t = s t a t e [1] , I l a s t =

s t a t e [2] , ysp = s ta t e [3] , u f f l a s t = s t a t e [4] ;
8 f loat e = sp − y ;
9

10 // f e e d f o r w a r d : Ap p l y u f f w h e n e v e r a new s e t p o i n t
a r r i v e s and r emove i t a f t e r e n t e r i n g t h e
d e a d b a n d

11 i f (sp != ysp) {
12 u f f l a s t = (sp > ysp) ? u0 + u f f : u0 − u f f ;
13 ysp = sp ;
14 } else {
15 i f (abs (e) < de l ta) {
16 u f f l a s t = u0 ;
17 }
18 }
19
20 // P Ev e n t
21 i f (abs (e − e l a s t) > de l ta) {
22 e l a s t += (e > e l a s t) ? de l t a : −de l ta ;
23 }
24
25 // I E v e n t
26 I += e ∗ (per iod /1000.0 f) ;
27 i f (abs (I − I l a s t) > d e l t a I) {
28 I l a s t += (I > I l a s t) ? d e l t a I : −d e l t a I ;
29 }
30 f loat v = u f f l a s t + kp∗ e l a s t + ki∗ I l a s t ;
31
32 // C o n d i t i o n a l i n t e g r a t i o n
33 f loat u = sat (v , 0 .86 , 1 . 0) ;
34 i f ((u − v) ∗ e >= 0 .0) {
35 s t a t e [0] = I ;
36 }
37
38 // s t o r e t h e s t a t e f o r t h e n e x t i t e r a t i o n
39 s t a t e [0] = I ;
40 s t a t e [1] = e l a s t ;
41 s t a t e [2] = I l a s t ;
42 s t a t e [3] = ysp ;
43 s t a t e [4] = u f f ;
44
45 return u ;
46 }

(c)

Figure 8: Different controllers implemented in Arduino: (a) PI, (b) PI-CI, and (c) PI2D

15

3.1 Implementing the controller

The controller is deployed into an Arduino Nano. The software platform provides a template to
implement generic controllers, so anyone who is familiarized with Processing can easily extend the
system to experiment with new control laws. The communication and other implementation details
are encapsulated into the provided code. The class Controller can be extended to implement the
control law. In particular, the method update is invoked with a fixed period T = 100ms. This period
is imposed by a physical limitation of the sensor, in order to provide stable measurements. The period
of the controller can be chosen to a different value, though the measurement will be updated only
every T seconds.

3.2 Control Strategies

Four control strategies have been implemented and tested, namely:

• PI: A classical PI controller.

• PI-CI: A PI controller with a Clegg’s integrator .

• PI2D: An event-based PI controller with feedforward [26].

• Robust Adaptive Hybrid PI [28].

The approach chosen in this work to compare the performance of the different controllers is based
on integral criteria. The following ones are commonly used to express the performance of a control
system ([25]):

• IE =
∫ t

0
e(t)dt

• IAE =
∫ t

0
|e(t)|dt

• ITAE =
∫ t

0
t|e(t)|dt

• ISE =
∫ t

0
e2(t)dt

• QE =
∫ t

0
(e2(t) + ρu2(t))dt

To compare the performance of the different strategies, the closed loop is excited with step changes
in the reference and external disturbances. The experiment are repeated several times for each im-
plemented strategy and then the performance indexes are computed and averaged. To introduce an
external disturbance, the plant provides a servo-mechanism that can modify the input air flow in a
repeatable manner.

3.2.1 PI

The first one is a PI controller in parallel form C(s) = (kp + ki

s)e(s). This implementation is provided
as a reference for the comparison. To cope with practical problems such as the saturation of the
actuator, the controller implementation incorporate an antiwindup mechanism, based on a conditional
integration. The code is shown in Figure 8(a), Listing 1.

16

3.2.2 PI-CI

The second implementation is a PI controller with a Clegg’s integrator (PI-CI). The Clegg’s integrator
is a special kind of integrator which is based on resetting the state to zero whenever the input crosses
by zero. It was shown by Clegg that the integrator with reset introduces a phase lag of −38.1◦, as
oppossed to the −90◦ of the linear integrator. The PI-CI consist of a PI controller with a Clegg’s
integrator connected in parallel with the linear integrator, and a reset coefficient ρ ∈ [0, 1) to weight
the influence of each one. That means that for ρ = 0 the controller is equivalent to a PI controller, and
ρ = 1 corresponds to a PI with a pure Clegg’s integrator. This latter case is not recommended though:
the effect of the integral term is lost and the resultant controller is not able to reject disturbances
in steady state. With regard to the implementation in Arduino, the code is shown in Figure 8(b),
Listing 2.

3.2.3 PI2D

The third implementation is an event-based PI with feedforward [26]. This controller consist of two
parts: the feedforward block respond to changes in the setpoint, and generates a two-state control
action that moves the output to the desired value, in absence of disturbances and assuming a perfect
model of the system. The feedback block consist of a PI controller which has been modified to
use a send-on-delta sampling strategy both in the proportional and integrated terms. To compute
the feedforward action, in [26] the process is modeled as a First Order plus Time Delay (FOTD),
yielding the two values of the control signal. However, since the model considered here contains a pure
integrator, the second value is fixed to zero, and the first one can be modified as an extra degree of
freedom. The feedback block is characterized by two params, δP and δI , which are the proportional and
integral event thresholds, respectively. A new event is triggered every time the difference between the
current value of the signal (e(t) or Ie(t)) and the value at the last event is greater than the threshold,
i.e. |e(t)− e(tk)| > δP for the proportional term and |Ie(t)− Ie(tk)| > δI for the integral term.

3.2.4 ROBUST ADAPTIVE HYBRID PI

The last implemented controller is described in [28]. It is a PI controller which resets its integrator’s
state if under the temporal regularization and the state vector of the closed loop belong to the jump
set, D. Defining e = r− y, ξ = xI − xeq, the controller reset condition is 2eξ + ξ2ε < 0, τ > ρ, and the
state is reset to e+ = e, x+I = xI − αε, ξ+ = 0, τ+ = 0.

4 Conclusion and Future Work

A versatile low cost experimentation platform has been designed and built starting from the scratch.
The use of rapid prototyping technologies in conjunction with open-source software and hardware
makes the platform affordable for institutions with less resources. Moreover, the open and extensible
design encourages the students to tinker with the system and boosts their creativity.

The Air Levitation System can be used as a standalone laboratory, connected directly to the student
PC or laptop, or it can be combined with a Raspberry PI or another single-board computer to build
a remote laboratory. The latter approach has been followed in the author’s institution, incorporating
several instances into the labs’ network UNILabs.

17

Finally, the platform has been complemented with learning activities and guidelines to have a
ready-to-use experimentation system. The activities include data-based model identification and the
implementation of several PI controllers.

References

[1] Mahmoud Abdulwahed and Zoltan K. Nagy. The trilab, a novel ict based triple access mode
laboratory education model. Computers & Education., 56:262–274, 2011.

[2] Panos Antsaklis, Tamer Basar, Ray DeCarlo, Harris McClamroch, Mark Spong, and Stephen
Yurkovich. NSF/CSS workshop on new directions in control engineering education. Technical
report, University of Illinois at Urbana-Champaign:, 1998.

[3] J. Bermudez-Ortega, E. Besada-Portas, J.A. Lopez-Orozco, J.A. Bonache-Seco, and J.M. de la
Cruz. Remote web-based control laboratory for mobile devices based on ejss, raspberry pi and
node.js. In In Proceedings of the 3rd IFAC Workshop on Internet Based Control Education,
Brescia, Italy, 4-5 November, IFAC PapersOnLine, volume 48, pages 158–163, 2015.

[4] J. Chacon, H. Vargas, G. Farias Castro, J. Sanchez Moreno, and S. Dormido. EJS, JIL Server
and LabVIEW: An architecture for rapid developments of remote labs. IEEE Transactions on
Learning Technologies, 8(4), 2015.

[5] Jesus Chacon, Gonzalo Farias, Hector Vargas, Antonio Visioli, and Sebastian Dormido. Remote
interoperability protocol: A bridge between interactive interfaces and engineering systems. IFAC-
PapersOnLine, 48(29):247 – 252, 2015.

[6] Dictino Chaos, Jesus Chacon, Jose Antonio Lopez-Orozco, and Sebastian Dormido. Virtual and
remote robotic laboratory using ejs, matlab and labview. Sensors, 13(2):2595–2612, 2013.

[7] Xuemin Chen, Gangbing Song, and Yongpeng Zhang. Virtual and remote laboratory development:
A review. In 12th International Conference on Engineering, Science, Construction, and Operations
in Challenging Environments, pages 3843–3852, Hawaii, USA, March 2010.

[8] Jennifer L. Chiu, Crystal J. DeJaegher, and Jie Chao. The effects of augmented virtual science
laboratories on middle school students’ understanding of gas properties. Computers & Education,
85:59 – 73, 2015.

[9] W. Christian and F. Esquembre. Modeling physics with easy java simulations. The Physics
Teacher, 45:475–480, 2007.

[10] Wolfgang Christian, Francisco Esquembre, and Lyle Barbato. Open source physics. Science,
334(6059):1077–1078, 2011.

[11] L. de la Torre, M. Guinaldo, R. Heradio, and S. Dormido. The ball and beam system: A case
study of virtual and remote lab enhancement with moodle. IEEE Transactions on Industrial
Informatics, 11(4):934–945, Aug 2015.

[12] L. de la Torre, J. Sanchez, S. Dormido, J.P. Sanchez, M. Yuste, and C. Carreras. Two web-
based laboratories of the fisl@bs network: Hooke’s and snell’s laws. European Journal of Physics,
32:571–584, 2011.

18

[13] L. de la Torre, J. P. Sanchez, and S. Dormido. What remote labs can do for you. Physics Today,
69:48–53, 2016.

[14] Sebastian Dormido. Control learning: present and future. Annual Reviews in Control, 28:115–135,
2004.

[15] Natividad Duro, Raquel Dormido, Hector Vargas, Sebastian Dormido-Canto, Jose Sanchez, Gon-
zalo Farias, Francisco Esquembre, and Sebastian Dormido. An integrated virtual and remote con-
trol lab: The three-tank system as a case study. Computing in Science & Engineering, 10(4):50–59,
2008.

[16] G. Farias, R. D. Keyser, S. Dormido, and F. Esquembre. Developing networked control labs a mat-
lab and easy java simulations approach. IEEE Transactions on Industrial Electronics, 57:32663275,
2010.

[17] L. Gomes. Current trends in remote laboratories. IEEE Transactions on Industrial Electronics,
56:47444756, 2009.

[18] Isáıas González, Antonio José Calderón, Andrés Mej́ıas, and José Manuel Andújar. Novel net-
worked remote laboratory architecture for open connectivity based on plc-opc-labview-ejs inte-
gration. application in remote fuzzy control and sensors data acquisition. Sensors, 16(11):1822,
2016.

[19] Ruben Heradio, Luis de la Torre, and Sebastián Dormido. Virtual and remote labs in control
education: A survey. Annual Reviews in Control, 42:1–10, 2016.

[20] Clara M. Ionescu, Ernesto Fabregas, Stefana M. Cristescu, Sebastin Dormido, and Robin De
Keyser. A remote laboratory as an innovative educational tool for practicing control engineering
concepts. IEEE Transactions on Education, 56(4):436 – 442, November 2013.

[21] Carlos A. Jara, Francisco A. Candelas, Santiago T. Puente, and Fernando Torres. Hands-on
experiences of undergraduate students in automatics and robotics using a virtual and remote
laboratory. Computers & Education, 57:2451–2461, 2011.

[22] Jing Ma and Jeffrey V. Nickerson. Hands-on, simulated, and remote laboratories: A comparative
literature review. ACM Computing Surveys, 38, 7, 2006.

[23] Andrés Mej́ıas, Reyes S Herrera, Marco A Márquez, Antonio José Calderón, Isáıas González, and
José Manuel Andújar. Easy handling of sensors and actuators over tcp/ip networks by open source
hardware/software. Sensors, 17(1):94, 2017.

[24] R. Pastor, J. Sanchez, and S. Dormido. Web-based virtual lab and remote experimentation using
easy java simulations. In In proceedings of the 16th IFAC World Congress, Prague, Czech Republic,
3-8 July, 2005.

[25] Karl J. Åström and Tore Hägglund. Advanced PID Control. ISA-The Instrumentation, Systems,
and Automation Society, 2005.

[26] Jose Sánchez, Antonio Visioli, and Sebastián Dormido. A two-degree-of-freedom pi controller
based on events. Journal of Process Control, 21:639–651, 2011.

19

[27] Eileen Scanlon, Chetz Colwell, Martyn Cooper, and Terry Di Paolo. Remote experiments, re-
versioning and re-thinking science learning. Computers & Education, 43(1-2):153–163, 2004.

[28] Ignacio Rubio Scola, Mariella M. Quadrios, and Valter J. S. Leite. Robust Hybrid PI Controller
with a Simple Adaptation in the integrator reset state. In IFAC PapersOnLine, volume 50, 2017.

[29] H. Vargas, J. Sanchez, N. Duro, S. Dormido-Canto, G. Farias, S. Dormido, F. Esquembre, C. H.
Salzmann, and D. Gillet. A systematic two-layer approach to develop web-based experimenta-
tion environments for control engineering education. Intelligent Automation & Soft Computing,
14(4):505–524, 2008.

[30] Z.C. Zacharia. Comparing and combining real and virtual experimentation: an effort to enhance
students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning,
23(2):120–132, 2007.

20

	I Report
	Introduction
	Approach

	Design
	Hardware
	Sensors
	CAD Software
	Design and construction of the server software
	Hardware interface
	Datalogging
	Communication
	Control

	The Virtual and Remote Lab
	Discussion

	Activities
	Implementing the controller
	Control Strategies
	PI
	PI-CI
	PI2D
	ROBUST ADAPTIVE HYBRID PI

	Conclusion and Future Work

