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5- inch  Mu l t i  Serv ice  S tandard  Gu ided  Pro jec t i le  

•Video Courtesy of BAE Systems 

 

https://www.bing.com/videos/search?q=Navy+5+inch+guided+projectile+video&view=detail&mid=E674

46D3A21E0F0E9D7FE67446D3A21E0F0E9D7F&FORM=VIRE 

https://www.bing.com/videos/search?q=Navy+5+inch+guided+projectile+video&view=detail&mid=E67446D3A21E0F0E9D7FE67446D3A21E0F0E9D7F&FORM=VIRE
https://www.bing.com/videos/search?q=Navy+5+inch+guided+projectile+video&view=detail&mid=E67446D3A21E0F0E9D7FE67446D3A21E0F0E9D7F&FORM=VIRE
https://www.bing.com/videos/search?q=Navy+5+inch+guided+projectile+video&view=detail&mid=E67446D3A21E0F0E9D7FE67446D3A21E0F0E9D7F&FORM=VIRE
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SYSTEM BLOCK DIAGRAM  
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GUIDANCE ISSUES:  

Minimum Control Effort Optimal Control Problem with: 

• Final Position (Miss Distance) Constraint 

• Terminal Angle of Fall (Velocity Unit Vector) Constraint 

• Control Action Constraint (Normal to Velocity Vector) 

• Nonlinear Dynamics (True Optimal Solution is TPBV Problem) 

• May be Final Time (Time on Target) Constraint  

 

Several Well Known Sub-Optimal Solutions 

• Modifications to Biased Proportional Nav 

• Explicit Guidance 

• Generalized Explicit Guidance (GENEX) 

• Not well suited to Guided Projectiles of “Limited Maneuver Capability”  
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NAVIGATION ISSUES:  

• Electronics Must Be Densely Packaged and Low Cost! 

• Inertial Sensors Must Survive High “G” Gun Launch 

Environment (~10,000 g’s) 

• GPS Must Acquire Quickly, In-Flight, On A Rapidly Moving, 

Spinning Projectile 

• Navigation Filter Must Initialize and Self-Orient In Mid-Flight 

• What to Do if GPS is Unavailable 
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CONTROL ISSUES:  

• Ballistic Portion of Flight Must Avoid Roll Resonance Issues 

• Airframe Control Capture at Canard Deployment 

• Airframe May Become Unstable at Canard Deploy 

• IMU Sensors May Be Saturated at Canard Deploy 

• High Roll Rate 

• Deployment Shock 

• Large Flight Envelope of Mach and Dynamic Pressure 

• Rapidly Changing Flight Envelope  

• Winds and Variations in Atmospheric Properties Cause Significant 
Uncertainties in Gain Scheduled Parameters (No Air Data Probes) 

• Highly Nonlinear and Uncertain Aerodynamics 

• Canard “Vortex Shedding” Interactions with Tails 

• Uncertain Tail “Clocking” Relative to Canards 
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EXPLICIT GUIDANCE  

Solution to a Time Varying Linear Optimal Control Problem of the form: 


ft

dt
u

J
0

2

2
    minimize

Subject to the following state constraints: 

Which yields the optimal control: 

 212
26

1
xTx

T
u 

Note – we often augment this with an acceleration term 

to include known effects of gravity and drag. 

Where we define: 
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GENERALIZED EXPLICIT GUIDANCE (GENEX)  
“Generalized Vector Explicit Guidance”, Ernest J. Ohlmeyer and Craig A. Phillips, AIAA Journal of 

Guidance, Control and Dynamics, Vol. 29, No. 2, March-April 2006 

Solution to a Time Varying Linear Optimal Control Problem of the form: 


ft

n
dt

T

u
J

0

2

2
    minimize

Subject to the following state constraints: 

Which yields the optimal control: 
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Where we define: 

Family of functions, parameterized by scalar n 

Higher n allows greater penalty weight on control 

usage as T → 0 

Note that n = 0 results in k1 = 6 and k2 = -2 reducing to 

the standard explicit guidance gains    



© 2018 Collins Aerospace, a United Technologies company. All rights reserved.  

This document does not contain any export controlled technical data. 
10 

GENEX wi th  Grav i t y  Term (NEW) :  

Note on Updated Derivation of Generalize Explicit Guidance to Include Gravity Acceleration Term from 

Ernie Ohlmeyer, May 2016 

Solution to a Time Varying Linear Optimal Control Problem of the form: 


ft

n
dt

T

u
J

0

2

2
    minimize

Subject to the following state constraints: 

Which yields the optimal control: 

Where we define: 

Family of functions, parameterized by scalar n 

Higher n allows greater penalty weight on control 

usage as T → 0 
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Setting k3 = 0 recovers original GENEX    
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EXAMPLE TRAJECTORIES USING GENEX 

GENEX Guidance from Apogee 

V0 = 1000 m/s  

Launch Elevation = 50 deg 

Final Gamma = -80 deg 

Target Range = 50 km 
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RECURSIVE CONTROL DESIGN:  

“Recursivist” – one who views the world 

as a giant opportunity to apply the 

rigorous methods of recursive nonlinear 

control design, one layer at a time!     
 

See also “Integrator Backsteppinger”,“Dynamic 

Inversionist” and “Feedback Linearizationist” 
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DYNAMIC INVERSION 

Given a nonlinear system “affine” w.r.t. the control input: 

If g(x) is invertible the control:  

Will cause the system to track the desired dynamics :  

Note that we are not actually inverting the dynamics of the 

entire system, only the algebraic input connection matrix! 
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DYNAMIC INVERSION 

The primary restrictions on Dynamic Inversion are: 

1. The system must be scalar or square – that is it must 

have the same number of inputs as states, and 

2. The matrix g(x) must be non-singular over the entire 

region of interest. 

Invertibility of g(x) also insures stability of the zero dynamics, so that 

the system is minimum phase. 

In fact, it is a stronger condition, which guarantees that the system 

can be decoupled into n independently controllable subsystems by the 

n control inputs.    

This condition is somewhat rare in real systems! 
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FEEDBACK L INEARIZATION  

•  Not Conventional (Jacobi) Linearization 

•  Systematic Method for finding a state transformation that maps the 

system to an “equivalent” linear system. 

•  Design Control for the Linear System 

•  Map the Control back to the original nonlinear system. 

x u 

z(x)z 

Linearization loop 

v)u(x,u zkv
T0 

Pole-Placement loop z 
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FEEDBACK L INEARIZATION 

Feedback Linearization involves a transformation of state variables in order to 

make the control design and stability analysis of the system easier. 

Nonlinear 

 System 

Linear 

 System 

State 

Transformation 

Control 

Design 

Stable Linear 

 System Inverse State 

Transformation 

Stable 

Nonlinear 

 System 

But, in order to guarantee “equivalence” of dynamics and transference of stability 

properties between the linear and nonlinear systems, we must rely on concepts from set 

theory, and differential geometry. 
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FEEDBACK L INEARIZATION -  COMMENTS 

Input-Output Feedback Linearization is more desirable for the control 

of missiles and aircraft, in which output tracking (command following) 

is of interest. 

Exact Output Tracking is not possible for non-minimum phase 

systems, which are equivalent to systems with less than full 

relative degree (r < n), and unstable zero dynamics.  

The machinery of State Feedback Linearization could be used to 

find an alternative output for non-minimum phase acceleration 

tracking – however the transformations are fairly intractable .  

Tail Control of Aircraft and Missiles exhibits minimum phase 

response in alpha and beta, but non-minimum phase 

characteristics in normal accelerations.  
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INTEGRATOR BACKSTEPPING  



)(xf

)(xg + 
u  x 

Given: 

Design a stabilizing “fictitious: control          for the output 

subsystem: 



)()()( xxgxf 

)(xg + 
u  x 

+ 

)(x

)(x
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INTEGRATOR BACKSTEPPING  

Then “backstep” that control through the integrator of the previous 

subsystem: 



)()()( xxgxf 

)(xg + 
u x 

+ 
z 

It can be seen that a change of variable                                  is 

equivalent to adding zero to the original subsystem: 

)(xz  

Resulting in an equivalent subsystem: 
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RECURSIVE DESIGN  

By recursive application of Integrator Backstepping, we  

can extend the results to higher order systems provided  

they have the strict feedback cascaded form: 

At each step we define a 

new state variable: 

Until the control design 

equation “pops” out: 
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RECURSIVE DESIGN  

Also at each step, we recursively accumulate the terms 

of the Lyapunov function: 

22

2

2

1
2

1

2

1

2

1
nzzzV  

For which it can be shown: 

Advantages of Recursive Backstepping Design 

over Feedback Linearization 

1. Transformation is simple (no PDE’s to solve) 

2. No need to cancel “beneficial” nonlinearities 

3. No need to cancel “weak” nonlinearities 

4. Can add robust stabilizing terms to overcome uncertainties 
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ROBUST RECURSIVE DESIGN  

Model the system with uncertainties: 

Which meet the Generalized Matching Conditions 

iizf  )(

Bound the uncertainty that appears in the      equations: 

Add a robust fictitious control term to the  

Such as:  



© 2018 Collins Aerospace, a United Technologies company. All rights reserved.  

This document does not contain any export controlled technical data. 
23 

DYNAMIC RECURSIVE DESIGN  

Dynamic Recursive Design extends the Recursive Process to  

systems which do not meet the strict feedback cascaded form: 

By differentiating u (n-r) times to 

create additional state variables, such 

that:  

Until the control design that 

“pops” out is a derivative of u: 
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6-DOF RIGID BODY EQUATIONS OF MOTION  
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6-DOF RIGID BODY EQUATIONS OF MOTION  

12 state equations in body coordinates: 

Bf

BM

External body forces 

External body moments 

BJ Moment of Inertia Matrix 

 mass m

Using the Euler Rate equations: 
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6-DOF RIGID BODY EQUATIONS OF MOTION  
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Recursive Design for Coupled Pitch/Yaw Controller 

Where            represent robust fictitious control terms to 

overcome bounded uncertainties.  
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21,

Then, recursively define the state transformations: 

Reference: Dynamic Robust Recursive Control: Theory and Applications, Ph.D. 

Dissertation, Richard A. Hull, University of Central Florida, Orlando Florida, 1996. 
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Recursive Design for Coupled Pitch/Yaw Controller 

The Design Equation (without robust terms) is: 

Where: 

and define the body normal accelerations to be: 

 

 

Where Fz and Fy are the aerodynamic forces normal to the body x axis. 

We write the Recursive Design Equation for an acceleration controller: 

Assume that                             are known parameters, mvmq ,,,,

Choosing the desired dynamics to map to a stable linear system: 
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Recursive Design for Coupled Pitch/Yaw Controller 
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Recursive Design for Coupled Pitch/Yaw Controller 

Using just the pitch and yaw dynamic equations and assuming p = 0, we 

can compute the rate of change in alpha and beta: 

Then, assuming small angle approximations for alpha and beta: 
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Recursive Design for Coupled Pitch/Yaw Controller 

Using approximations for the time derivatives of alpha and beta: 

We will solve for the control input to give the required body angular accelerations …  
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Recursive Design for Coupled Pitch/Yaw Controller 

Recalling the recursive design equation,  

 

and using the pitch-yaw acceleration and body rate vectors: 

 

 

We can substitute the preceding results into the design equation 

 

 

 

 

Where we have defined 
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Recursive Design for Coupled Pitch/Yaw Controller 

Now, provided F is invertible, we can solve the recursive design 

equation, for the required body angular accelerations: 

 

 

Equating to the body moment equations: 

 

 

We can solve for the body moments required to give the desired 

body acceleration response:   

 

Then, we “invert” the aerodynamic moment equations to find the 

pitch and yaw control input deflections that will give the required 

body moments above. 
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Hypothe t i ca l  Pro jec t i le  Aerodynamics  Mode l  

Define aerodynamic forces and moments in the pitch and yaw axes in 

terms of alpha, beta, and the pitch and yaw control deflections as: 
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Where: 

Assume aerodynamic coefficients are the following functions of alpha, 

beta, pitch and yaw control deflections (in degrees): 

length reference   area, reference   pressure, dynamic  refref lSq

Coupled 

Nonlinear 

Equations 

in Alpha 

and Beta  
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Aerodynamic Force and Moment Coefficients for a Hypothetical Projectile 

as Function of Alpha, Beta for Delta = 0 
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Aerodynamic Force and Moment Coefficients for a 

Hypothetical Projectile as Function of Alpha, Beta and Delta 
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Recursive Pitch/Yaw Controller for the Hypothetical Projectile 
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Using  the Force Coefficient Polynomials:  

We can find the required “aero slopes” matrix:  
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From the coefficient polynomials:  
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Recursive Pitch/Yaw Controller for the Hypothetical Projectile 

Using F, we compute the required body angular rates and moments:  

where:                                  are from the accelerometer and gyro feedbacks 

 

the following parameters are estimated in real-time: 
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And             are gains chosen by the designer to place the poles of the 

feedback linearized system. 
21,kk

Inertia Coupling Included 

Ignore – pitch and yaw 

components are zero if p = 0 

Note – in the autopilot we have let 

w_b(2) = -r , therefore reverse the 

sign of the required yaw moment! 
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Recursive Design Applied to the Hypothetical Projectile 
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Finally, we use the aerodynamic moment equations:  

 

 

 

 

 

to solve for the pitch and yaw control deflections needed to 

give the required pitch and yaw moments:  
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Note: Pitch and Yaw Control 

Contributions May Not be  

De-coupled in the Real World! 

Note – in the autopilot we have let 

w_b(2) = -r , therefore reverse the 

sign of the required yaw moment! 
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Hypothetical Projectile Parameters 

A totally fictitious configuration intended as a model to study 

guidance and control issues for guided projectiles. 

Model Parameters 

Parameter Value Units 

Diameter 140 mm 

Mass 50 kg 

Xcg (from nose) 1.0 m 

Ixx 0.200 Kg-m^2 

Iyy = Izz 18.00 Kg-m^2 

Iyz = Izy 0.50 Kg-m^2 

Sref (aero reference area) 0.0154 m^2 

Lref (aero reference length) 1.0 m 

MRC (aero model ref center) 1.0 m 
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MATLAB/Simulink Simulation 
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MATLAB/Simulink Simulation Results 

Simultaneous Pitch and Yaw Step Commands 

Full Coupled Nonlinear Aero Model with Inertia Coupling 

Simultaneous Pitch and Yaw Step Commands 

Full Coupled Nonlinear Aero Model with Inertia Coupling 
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MATLAB/Simulink Simulation Results 

Simultaneous Pitch and Yaw Step Commands at Different Frequencies 

Full Coupled Nonlinear Aero Model with Inertia Coupling 
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Summary  and  Conc lus ions  

• Precision Guided Projectiles Pose Challenging Guidance, Navigation and Control 

Problems 

• GENEX Guidance Law Provides an Analytical Solution to the Optimal Guidance 

Problem  

• Nonlinear Recursive Control Design Approach Demonstrated to Get Analytical Solution 

for Pitch/Yaw Autopilot for a Hypothetical Projectile with Coupled Nonlinear 

Aerodynamics  and Off-Diagonal Inertia Coupling Terms. 

• Method requires computation of “slopes” of aerodynamic force functions, and 

inverse of aero moment functions 

• Good tracking control can be achieved without addition of integrators to controller 

• Good method for getting quick “simulation quality” controller 

• Problems may occur if aerodynamic partial derivatives matrix becomes ill-

conditioned 

• Additional terms can be added to provide robustness to bounded uncertainties and 

un-modelled nonlinear dynamics 
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