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Attitude and Pose Representations

ATTITUDE REPRESENTATIONS

• Rigid body attitude (orientation) is represented globally and uniquely by the set
of rotation matrices, which are orthogonal matrices with determinant +1.
• This set is denoted SO(3), and it is a Lie group (an algebraic group that

is also a differentiable manifold) of dimension three.
• Several other attitude representations exist, most common being the 3-2-1 Eu-

ler angles, unit quaternions, and (modified) Rodrigues parameters
• Three-parameter representations, like the Euler angle sets and the

(modified) Rodrigures parameters, suffer from kinematic/geometric
singularities, commonly termed “gimbal lock.” This is because they are
local coordinate representations of attitude.

• The Lie group of unit quaternions S3 double covers SO(3),
(S3/Z2 ' SO(3)). Therefore although it can represent rotations globally,
every rotation matrix (attitude) can be represented by exactly two sets
of unit quaternions.

SO(3) and S3

SO(3) is the natural representation set (global and unique) for rigid body attitude.
Due to the double covering of SO(3) by S3, any continuous observer or feedback
controller design using unit quaternions could be unstable due to a phenomenon
called unwinding (Bhat and Bernstein (2000); Chaturvedi, Sanyal and McClamroch
(2011).



Background Attitude Estimation on SO(3) Discrete-time Stable Attitude Estimation on SO(3) Pose Estimation on SE(3) Conclusions and Challenges

Attitude and Pose Representations

ATTITUDE REPRESENTATIONS

• Rigid body attitude (orientation) is represented globally and uniquely by the set
of rotation matrices, which are orthogonal matrices with determinant +1.
• This set is denoted SO(3), and it is a Lie group (an algebraic group that

is also a differentiable manifold) of dimension three.
• Several other attitude representations exist, most common being the 3-2-1 Eu-

ler angles, unit quaternions, and (modified) Rodrigues parameters
• Three-parameter representations, like the Euler angle sets and the

(modified) Rodrigures parameters, suffer from kinematic/geometric
singularities, commonly termed “gimbal lock.” This is because they are
local coordinate representations of attitude.

• The Lie group of unit quaternions S3 double covers SO(3),
(S3/Z2 ' SO(3)). Therefore although it can represent rotations globally,
every rotation matrix (attitude) can be represented by exactly two sets
of unit quaternions.

SO(3) and S3

SO(3) is the natural representation set (global and unique) for rigid body attitude.
Due to the double covering of SO(3) by S3, any continuous observer or feedback
controller design using unit quaternions could be unstable due to a phenomenon
called unwinding (Bhat and Bernstein (2000); Chaturvedi, Sanyal and McClamroch
(2011).



Background Attitude Estimation on SO(3) Discrete-time Stable Attitude Estimation on SO(3) Pose Estimation on SE(3) Conclusions and Challenges

Attitude and Pose Representations

ATTITUDE REPRESENTATION ON SO(3)

A rotation matrix from coordinate frame B to coordinate frame I represents a 3D
rotation as a transformation. Frame B could be a rigid body-fixed frame and frame I
an inertial (spatial) coordinate frame, in which case the rotation matrix R ∈ SO(3)

represents the attitude of the rigid body. The direction cosine matrix C = RT would be
the inverse transformation, and can also be used as an attitude representation.
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Attitude and Pose Representations

POSE REPRESENTATIONS

• Rigid body pose (position and orientation) is represented globally and uniquely
by the union of the set of rotation matrices and three-dimensional Euclidean
vector space.
• This set is denoted SE(3), and it is a Lie group of dimension six.
• SE(3) is a semi-direct product of SO(3) and R3, denoted

SE(3) = SO(3) n R3.
• Other pose representations consist of product sets of three-dimensional vector

space with other attitude representation sets, or the set of double quaternions
• These representations have the same limitations as the representations

of the attitude part, i.e., singularities for three parameter attitude
representations and lack of uniqueness leading to possible unwinding
behavior for R3 × S3 and the set of double quaternions.

Semi-direct Product

A semi-direct product of two groups H and N is a product of these groups such
that N is a normal subgroup of G, i.e., if n ∈ N and g ∈ G then g′ = ngn−1 ∈ G. G
is said to be a semi-direct product of H acting on N, denoted G = H n N. For
SE(3), the normal subgroup is R3. Elements of SE(3) are obtained as “rotations
acting on translations,” as explained in the following slide.
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Attitude and Pose Representations

POSE REPRESENTATION ON SE(3)

• The 3D pose of a rigid body can be represented on SE(3) using a “frame trans-
formation” matrix:

g =

[
R b
0 1

]
∈ SE(3) ⊂ R4×4, where R ∈ SO(3), b ∈ R3.

• The 0 in the bottom left of the block matrix g represents a 1× 3 row
matrix of zeros.

• Can be verified that if g1, g2 ∈ SE(3), then g1g2 ∈ SE(3) where the group
operation is the matrix product.

• To show that R3 is the normal subgroup of the semi-direct product SE(3), note
that if p ∈ R3 and I ∈ SO(3) denotes the (3× 3) identity matrix, then

n =

[
I p
0 1

]
' p ∈ R3 ⊂ SE(3) and gng−1 =

[
I Rp
0 1

]
' Rp ∈ R3.

• The product gn shows the action of SE(3) on R3 is a rotation followed by a
translation, p→ Rp + b.
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Attitude and Pose Representations

ATTITUDE AND POSE KINEMATICS

• Attitude kinematics relates the time derivative of the rotation matrix to the an-
gular velocity vector Ω ∈ R3 according to

Ṙ = RΩ×, where (·)× : R3 → so(3)

is the skew-symmetric cross product operator map, and so(3) is the vector space
of 3× 3 skew-symmetric matrices, identified with the Lie algebra of SO(3).

• Pose kinematics relates the time derivative of the pose g ∈ SE(3) to the body
velocities according to

ġ = gξ∨, where ξ =

[
Ω
ν

]
∈ R6 and ξ∨ =

[
Ω× ν
0 0

]
∈ se(3).

• se(3) denotes the six-dimensional Lie algebra (tangent space at identity)
of the six-dimensional Lie group of rigid body pose, SE(3).
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ATTITUDE DETERMINATION ON SO(3)

Attitude determination from vector measurements

• Attitude can be determined uniquely from two or more non-collinear vector
measurements made in a body-fixed frame.

• Consider a matrix of k ≥ 2 vectors, measured and expressed in body frame B:

Um = [um
1 um

2 um
1 × um

2 ] ∈ R3×3 when k = 2, and

Um = [um
1 um

2 ...u
m
k ] ∈ R3×k when k > 2.

• The corresponding vectors are known and expressed in inertial frame I as:

E = [e1 e2 e1 × e2] when k = 2, and

E = [e1 e2 ...ek] ∈ R3×k when k > 2.

• The matrix of the “true” body vectors is:

U = RTE = [u1 u2 u1 × u2] when k = 2, and

U = RTE = [u1 u2 ...uk] ∈ R3×k when k > 2.
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ATTITUDE DETERMINATION ON SO(3)

Wahba’s function as a Morse function on SO(3)

• Find an estimated attitude R̂ ∈ SO(3) such that a weighted sum (with wieght
wi > 0) of the squared norms of the vector errors si = ei − R̂um

i is minimized
(Wahba’s problem):

MinimizeR̂ U
0 =

1
2

k∑
i=1

wi(ei − R̂um
i )T(ei − R̂um

i ), (2.1)

• Equivalently, minimize U0(R̂,Um) = 1
2 〈E− R̂Um, (E− R̂Um)W〉with respect to R̂

for positive diagonal W = diag(wi), i = 1, . . . , k.
• Here 〈·, ·〉 denotes the trace inner product on the (linear) space of m× n

matrices, defined as: 〈A,B〉 = tr(ATB), A,B ∈ Rm×n.
• That U0(R̂,Um) is a Morse function on SO(3) with four non-degenerate

critical points, was first pointed out by Sanyal (2006 ACC).
• Static attitude determination on SO(3) as solution to (2.1) was obtained in 2006

by:

• the singular value decomposition (SVD) of L = EW(Um)T by Markley;
• and the QR decomposition of L by Sanyal.
• Both methods yield the same solution, but the SVD is numerically more

efficient than the QR method.
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ATTITUDE DETERMINATION ON SO(3)
In the absence of measurement errors, Um = U = RTE. Define Q = RR̂T as the attitude
estimation error and let W = WT > 0 be a positive definite matrix (not necessarily
diagonal). The critical points of this generalization of Wahba’s cost function are given
by the following lemma.

Lemma 0

Let E ∈ R3×k be as defined earlier and let rank(E) = 3. Let the gain matrix W of the generalized
Wahba cost function be designed as,

W = ET(EET)−1K
(
EET)−1E, (2.2)

where K = diag([k1, k2, k3]) and k1 > k2 > k3 > 0. Then,

U =
1
2

〈
E− R̂Um, (E− R̂Um)W

〉
= 〈K, I − Q〉 , (2.3)

is a Morse function on SO(3) whose disjoint non-degenerate critical points are given by,

Q ∈{I,diag([−1,−1, 1]),diag([1,−1,−1]),diag([−1, 1,−1])} (2.4)

and U has a global minimum at Q = I.

If k1 = k2 or k2 = k3 or k1 = k2 = k3, then the cost function U in eq. (2.3) is a Morse-Bott
function, which is a generalization of a Morse function with a closed submanifold of
critical points with non-degenerate Hessians normal to this submanifold. Morse-Bott
functions on SO(3) have also been used to design attitude observers, e.g., Lageman,
Trumpf, and Mahony (2010).
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BACKGROUND: ATTITUDE AND POSE OBSERVERS ON SO(3) AND SE(3)

• Attitude estimation using unit quaternions on S3: using generalizations of
extended Kalman filtering: MEKF, AEKF, unscented EKFs.

• Attitude and pose estimation on SO(3) and SE(3):
• Near-optimal minimum energy filtering: Mortensen’s method (1968), solved

for SO(3) and SE(3) upto second order in Zamani et al. (2013).
• Complementary filters, e.g., Mahony et al. (2008), Bonnabel et al. (2009),

Hua et al. (2017), Berkane & Tayebi (2018)).
• Gradient-like observers (e.g., Lageman et al. (2010), Vasconcelos et al. (2010),

Hua et al. (2011))
• Stochastic estimators on SO(3) and SE(3) including invariant Kalman

filtering (e.g., Barrau et al. (2017), T. Lee (2018)).
• “Semi-stochastic methods” like particle filtering, e.g., Bohn & Sanyal (2012).
• Hybrid schemes (e.g., Wu et al. (2016), Wang & Tayebi (2017)).

• The variational attitude estimator (VAE) in continuous and discrete time (Izadi &
Sanyal (2014), Izadi et. al. (2015).

• The variational pose estimator (VPE) in continuous and discrete time (Izadi &
Sanyal (2015, 2016)).
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NONLINEARLY STABLE OBSERVER DESIGNS ON SO(3)

• Most of the observers designed on SO(3) are not guaranteed to be nonlinearly
stable:
• Near-optimal and gradient descent observers can become unstable in the

presence of measurement noise or when sampled in discrete time,
• Stochastic estimators can become unstable if the assumed statistics of

measurement noise is wrong.
• Further, many of these attitude observers (e.g., complementary filters) do not

estimate angular velocity, and assume rapid measurements of angular velocity
are available to update attitude estimates.

• Both continuous-time and discrete-time versions of the variational attitude
estimator are almost globally asymptotically stable (actually, exponentially
stable).

Variational Estimation

This concept is based on constructing a fictitious “mechanical energy” like quantity
from estimation errors of the states of a mechanical system. This “energy” is then
dissipated in the form of a dissipative “mechanical system” obtained using the
Lagrange-d’Alembert principle of variational mechanics. The “equations of motion” of
this “mechanical system” give rise to the observer equations.
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LAGRANGIAN OF THE STATE ESTIMATE ERRORS

• The “potential energy” is (the generalization of) Wahba’s cost function:

U(R̂,Um) = Φ
(

1
2 〈E− R̂Um, (E− R̂Um)W〉

)
.

• Φ : R+ → R+ is a class-K function, so U and U0 have the same
non-degenerate critical points on SO(3) with the same indices.

• The “kinetic energy” is T (Ω̂,Ωm, β̂) = m
2 (Ωm − Ω̂− β̂)T(Ωm − Ω̂− β̂).

• m > 0 is an observer gain, Ωm is the measured angular velocity, where
Ωm = Ω + ν + β.

• ν ∈ R3 and β ∈ R3 are the additive noise and angular velocity bias vectors,
respectively.

• β̂ ∈ R3 is the estimated angular velocity bias.

• The Lagrangian is L(R̂,Um, Ω̂,Ωm, β̂) = T (Ω̂,Ωm, β̂)− U(R̂,Um)

= m
2 (Ωm − Ω̂− β̂)T(Ωm − Ω̂− β̂)− Φ

(
1
2 〈E− R̂Um, (E− R̂Um)W〉

)
.

• The “total energy” function is E(R̂,Um, Ω̂,Ωm, β̂) = T (Ω̂,Ωm, β̂) + U(R̂,Um)

= m
2 (Ωm − Ω̂− β̂)T(Ωm − Ω̂− β̂) + Φ

(
1
2 〈E− R̂Um, (E− R̂Um)W〉

)
.
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APPLYING LAGRANGE-D’ALEMBERT PRINCIPLE

• The action functional constructed from the Lagrangian is:

S(L(R̂,Um, Ω̂,Ωm)) =

∫ T

t0

(
T (Ω̂,Ωm, β̂)− U(R̂,Um)

)
ds

=

∫ T

t0

{
m
2

(Ωm − Ω̂− β̂)T(Ωm − Ω̂− β̂)− Φ
(1

2
〈E− R̂Um, (E− R̂Um)W〉

)}
ds.

• The angular velocity measurement residual is: ω := Ωm − Ω̂− β̂.

• Apply the Lagrange-d’Alembert principle to the action functional
S(L(R̂,Um, Ω̂,Ωm)), in the presence of a dissipation τD = Dω, where
D = DT > 0. This leads to the VAE.
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THE (CONTINUOUS TIME) VARIATIONAL ATTITUDE ESTIMATOR

Theorem 1 (Izadi et al. 2016)

Applying the Lagrange-d’Alembert principle to the action functional S(L(R̂,Um, Ω̂,Ωm)) de-
fined earlier, with a dissipative “torque” τD = Dω where D = DT > 0, leads to the following
observer equations for the attitude and angular velocity states:

˙̂R = R̂Ω̂× = R̂(Ωm − ω − β̂)×,

mω̇ = −mΩ̂× ω + Φ′
(
U0(R̂,Um)

)
SL(R̂)− Dω,

Ω̂ = Ωm − ω − β̂,

where R̂(t0) = R̂0, ω(t0) = ω0 = Ωm
0 − Ω̂0, SL(R̂) = vex

(
LTR̂ − R̂TL

)
∈ R3, L =

EW(Um)T, and vex(·) : so(3)→ R3 is the inverse of (·)×.
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BIAS ESTIMATION FOR THE VAE

Proposition 1

Let β be a constant bias in angular velocity measurements. Then, in the absence of
measurement noise, the variational attitude estimator of Theorem 1 along with the
following update equation for the bias estimate:

˙̂
β = Φ′

(
U0(R̂,Um)

)
P−1SL(R̂),

is almost globally asymptotically stable (AGAS) for P ∈ R3×3 positive definite.

The following Lyapunov function is used to prove the convergence of estimation
errors:

V(Q, ω, β̃) =
m
2
ωTω + Φ

(
〈I − Q,K〉

)
+

1
2
β̃TPβ̃.

Note that β = 0 (unbiased angular velocity) is a special case of the above result. In the
presence of bounded measurement noise and errors, the VAE is shown to be Lyapunov
stable with bounded estimation errors (Izadi et al., 2016).
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DISCRETE-TIME LAGRANGIAN

• Discrete-time stable versions of the VAE are required for computer simulations
and implementations, including onboard computer (microprocessor)
implementations on autonomous vehicles.
• Observers that are stable in continuous time may not retain their stability

when sampled in discrete time, as shown in Hamrah et al (2018, 2019).
• The “potential energy” in the measurement residual for attitude is discretized as:

U(R̂i,Um
i ) = Φ

(
U0(R̂i,Um

i )
)

= Φ
(1

2
〈Ei − R̂iUm

i , (Ei − R̂iUm
i )Wi〉

)
, i ∈W,

where Wi is a positive definite matrix of weight factors for the measured
directions at time ti.
• Wi may be time-varying and designed according to Lemma 1.

• The “kinetic energy” in the angular velocity measurement residual is discretized
as:

T (Ω̂i,Ω
m
i ) =

m
2

(Ωm
i − Ω̂i − β̂i)

T(Ωm
i − Ω̂i − β̂i),

where m is a positive scalar.
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DISCRETE-TIME VAE

The discrete-time Lagrangian so obtained is L(R̂i,Um
i , Ω̂i,Ω

m
i , β̂i) = T (Ω̂i,Ω

m
i , β̂i) −

U(R̂i,Um
i ). From this, we can obtain the discrete action sum S(L(R̂i,Um

i , Ω̂i,Ω
m
i , β̂i)) =∑N

i=0 hL(R̂i,Um
i , Ω̂i,Ω

m
i , β̂i), where h is a fixed time step size.

Theorem 2 (Izadi et al., 2016)

A discrete-time variational attitude estimator obtained by applying the discrete Lagrange-
d’Alembert principle to the above discrete action sum is:

R̂i+1 = R̂i exp
(
h(Ωm

i − ωi − β̂i)
×),

β̂i+1 = β̂i + hΦ′
(
U0(R̂i,Um

i )
)
P−1SLi (R̂i),

Ω̂i = Ωm
i − ωi − β̂i,

mωi+1 = exp(−hΩ̂×i+1)
{

(mI3×3 − hD)ωi

+ hΦ′
(
U0(R̂i+1,Um

i+1)
)
SLi+1 (R̂i+1)

}
,

where SLi (R̂i) = vex(LT
i R̂i − R̂T

i Li) ∈ R3, Li = EiWi(Um
i )T ∈ R3×3, P is as defined by

Proposition 1, and (R̂0, Ω̂0) ∈ SO(3)× R3 are initial state estimates.

Note: the exp : so(3)→ SO(3) map is evaluated using Rodrigues’ rotation formula. The
above discrete time observer is in the form of a Lie group variational integrator (Leok &
Marsden (2003), Sanyal (2004), etc.).
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Numerical Results on SO(3)

NUMERICAL SIMULATION PARAMETERS

• The rigid body moment of inertia (unknown to VAE) is
Jv = diag([2.56 3.01 2.98]T) kg.m2.

• External torque (unknown to VAE) applied to the rigid body
ϕ(t) = [0 0.028 sin(2.7t− π

7 ) 0]T N.m.

• Initial attitude and angular velocity are

R0 = exp

((π
4
× [

3
7

6
7

2
7

]T
)×)

and Ω0 =
π

60
× [−2.1 1.2 − 1.1]T rad/s.

• A set of at least two inertial sensors and rate gyros measuring the angular
velocity vector, are assumed to be onboard the body.

• Time interval of T = 40 s, and time stepsize of h = 0.01 s.
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Numerical Results on SO(3)

NUMERICAL SIMULATIONS

• Three sinusoidal noises with frequencies 1, 10, and 100 Hz and amplitudes of up
to 2.4◦ are added to direction measurements.

• Two sinusoidal noises of 20 and 100 Hz are also added to the angular velocity,
with magnitudes of up to 0.97◦/s.

• Constant bias in gyro reading β = [−0.01 − 0.005 0.02]T rad/s.

• The estimator Gains m = 5, P = 2× 103I, and D = diag
(
[17.4 18.85 20.3]T

)
.

• The initial state and bias estimates

R̂0 = exp

(( π

2.5
× [

3
7

6
7

2
7

]T
)×)

,

Ω̂0 = [−0.26 0.1725 − 0.2446]T rad/s,

and β̂0 = [0 − 0.01 0.01]T rad/s.
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Numerical Results on SO(3)

PLOT OF ATTITUDE ESTIMATION ERROR (PRINCIPAL ANGLE)
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Numerical Results on SO(3)

PLOT OF ANGULAR VELOCITY ESTIMATION ERROR
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Numerical Results on SO(3)

PLOT OF BIAS ESTIMATION ERROR
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Numerical Comparison Results

NUMERICAL SIMULATIONS AND COMPARISONS

• The variational attitude estimator is compared with three other state-of-the-art
attitude estimators

• The attitude estimators being compared to are:
• the geometric approximate minimum-energy (GAME) filter by Zamani et al

(2013)
• the “industry-standard” multiplicative extended Kalman filter (MEKF), e.g.,

Markley (2003)
• a constant gain observer (CGO) in the form of a complementary filter,

Mahony et al (2008)
• All estimators start with identical initial estimates and estimate error, and have

identical measurement noise added to a given attitude profile
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Numerical Comparison Results

• Sampling interval h = 0.01s, time duration T = 20s.

• E = I3×3, R̂0 = I3×3 and unbiased sensors.
• The initial attitude is selected randomly about the identity with standard

deviation in principal angle σ(φ(R0)) = 60◦.
• The rigid body has the following angular velocity profile:

Ω =

 sin( 2π
15 t)

− sin( 2π
18 t + π

20 )

cos( 2π
17 t)


• D = diag

(
[1.8 1.95 2.1]

)
N.s and W = diag

(
[1.67 1.11 0.56]

)
.

• Two cases are simulated: (1) with high noise levels for which all the filter gains
are designed; (2) with low noise levels for which none of the gains are designed.
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Numerical Comparison Results

CASE 1: HIGH NOISE LEVELS
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Numerical Comparison Results

CASE 2: LOW NOISE LEVELS, WITH FILTER GAINS AS BEFORE
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Numerical Comparison Results

CASE 2: LOW NOISE LEVELS, ZOOM IN AND RUN TIME
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Table: Run-time of different estimators
a

Estimator GAME MEKF CGO Var. Est.
aa

Run-Time 0.6864 s 0.6240 s 0.4304 s 0.1716 s
a
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Numerical Comparison Results

VIDEO OF EXPERIMENT
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FRAME DEFINITIONS

Inertial landmarks on O with coordinate frame O as observed from vehicle S with co-
ordinate frame S, using vision and/or LiDAR sensor measurements. This information
can be used for instantaneous determination of the pose or dynamic pose estimation.

X

Y

Z

y

x

z

b

qkj

pj

sk

Frame O := {X, Y, Z}

Frame S := {x, y, z}

S

O

aj

Figure: Coordinate frame definitions for pose estimation
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POSE MEASUREMENT MODEL

• Referring to Fig. ??, vector measurements pj = R(qk
j + sk) + b = Raj + b, j ∈ I(t)

• For LiDAR range measurements, am
j = (qk

j )
m + sk = (%k

j )
muk + sk, j ∈ I(t).

• The mean of these vectors satisfies ām = RT(p̄− b) + ς̄ , where p̄ = 1
j

j∑
j=1

pj,

ām = 1
j

j∑
j=1

am
j .

• dj = Rlj ⇒ D = RL, where D = [d1 · · · dn], L = [l1 · · · ln] ∈ R3×n,
di = pλ − p`, lj = aλ − a`, for λ, ` ∈ I(t), λ 6= `.

• Lm = RTD + L
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VELOCITY MEASUREMENTS AND STATE ESTIMATION ERRORS

• Velocities Ω and ν are measured directly using inertial sensors, radar, and/or
lidar; or by filtering position vector measurements in the body-fixed coordinate
frame.

• The estimated pose and its kinematics

ĝ =

[
R̂ b̂
0 1

]
∈ SE(3), ˙̂g = ĝξ̂∨.

• The pose estimation error

h = gĝ−1 =

[
Q b− Qb̂
0 1

]
=

[
Q x
0 1

]
∈ SE(3),

where Q = RR̂T and x = b− Qb̂.

• In the case of perfect measurements, ḣ = hϕ∨, where

ϕ(ĝ, ξm, ξ̂)=
[
ω
υ

]
= Adĝ

(
ξm − ξ̂), where Adg =

[
R 0

b×R R

]
for g =

[
R b
0 1

]
.
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LAGRANGIAN FROM MEASUREMENT RESIDUALS

• Trace inner product 〈A1,A2〉 := tr(AT
1 A2).

• Attitude potential energy function U0
r (ĝ, Lm,D) = 1

2 〈D− R̂Lm, (D− R̂Lm)W〉.

• Translational potential energy function Ut(ĝ, ām, p̄) = 1
2κyTy = 1

2κ‖p̄− R̂ām− b̂‖2,
where y ≡ y(ĝ, ām, p̄) = p̄− R̂ām − b̂ and κ is a positive scalar.

• Total potential energy function
U(ĝ, Lm,D, ām, p̄) = Φ

(
U0

r (ĝ, Lm,D)
)

+ Ut(ĝ, ām, p̄).

• Kinetic energy-like function T
(
ϕ(ĝ, ξm, ξ̂)

)
= 1

2ϕ(ĝ, ξm, ξ̂)Tϕ(ĝ, ξm, ξ̂).
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LAGRANGIAN FROM MEASUREMENT RESIDUALS

• The Lagrangian L(ĝ, Lm,D, ām, p̄, ϕ) = T (ϕ)− U(ĝ, Lm,D, ām, p̄).

• The action functional S
(
L(ĝ, Lm,D, ām, p̄, ϕ)

)
=
∫ T

t0
L(ĝ, Lm,D, ām, p̄, ϕ)dt

• Rayleigh dissipation term Dϕ where D = DT ∈ R6×6 � 0.

• Apply the Lagrange-d’Alembert Principle: δh,ϕS
(
L(h,D, p̄, ϕ)

)
=
∫ T

t0
ηTDϕdt.
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THE VARIATIONAL POSE ESTIMATOR

Theorem 2

The nonlinear variational estimator for pose and velocities is:
ϕ̇ = ad∗ϕϕ− Z(ĝ, Lm,D, ām, p̄)− Dϕ,

ξ̂ = ξm − Adĝ−1ϕ,

˙̂g = ĝ(ξ̂)∨,

where ad∗ζ = (adζ())T, adζ(=)

[
w× 0
v× w×

]
for ζ =

[
w
v

]
∈ R6, and

Z(ĝ, Lm,D, ām, p̄) =

[
Φ′
(
U0

r (ĝ, Lm,D)
)

SΓ(R̂) + κp̄×y
κy

]
,

where SΓ(R̂) = vex
(
DW(Lm)TR̂T − R̂LmWDT).

Note that some velocities may not be measured directly, in which case they are substi-
tuted by filtered position vectors.
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Discrete-time VPE

DISCRETE-TIME VPE EQUATIONS

First-order discrete-time VPE

(Jωi)
× =

1
∆t

(FiJ − J FT
i ),

(M + ∆tDt)υi+1 = FT
i Mυi + ∆tκ(b̂i+1 + R̂i+1ām

i+1 − p̄i+1),

(J + ∆tDr)ωi+1 = FT
i Jωi + ∆tMυi+1 × υi+1

+∆tκp̄×i+1(b̂i+1 + R̂i+1ām
i+1)

−∆tΦ′
(
U0

r (ĝi+1, Lm
i+1,Di+1)

)
SΓi+1 (R̂i+1),

ξ̂i = ξm
i − Adĝ−1

i
ϕi,

ĝi+1 = ĝi exp(∆tξ̂∨i ),

where Fi ∈ SO(3),
(
ĝ(t0), ξ̂(t0)

)
= (ĝ0, ξ̂0), ϕi = [ωT

i υT
i ]T, and SΓi (R̂i) is the value of

SΓ(R̂) at time ti.

Note that this is obtained as a Lie group variational integrator (LGVI) scheme (Leok &
Marsden (2003), Sanyal (2004), etc.,) on TSE(3) ' SE(3)×R6, which is computationally
efficient and respects the geometry of SE(3).
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Numerical Simulations

NUMERICAL SIMULATION PARAMETERS

• The vehicle mass and moment of inertia are taken to be mv = 420 g and
Jv = [51.2 60.2 59.6]T g.m2, respectively.

• φv(t) = 10−3[10 cos(0.1t) 2 sin(0.2t) − 2 sin(0.5t)]T N and τv(t) = 10−6φv(t)
N.m

• The vehicle’s initial attitude and position are:

R0 = expmSO(3)

(( π
28
× [3 6 2]T

)×)
,

and b0 = [2.5 0.5 − 3]T m.

• Its initial angular and translational velocity are:

Ω0 = [0.2 − 0.05 0.1]T rad/s,

and ν0 = [−0.05 0.15 0.03]T m/s.
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Numerical Simulations

NUMERICAL SIMULATION PARAMETERS

• Time interval of T = 150 s, and time stepsize of h = 0.02 s.

• The estimator gains are

J = diag
(
[0.9 0.6 0.3]

)
,

M = diag
(
[0.0608 0.0486 0.0365]

)
,

Dr = diag
(
[2.7 2.2 1.5]

)
,Dt = diag

(
[0.1 0.12 0.14]

)
.

• Initial state estimates are

ĝ0 = I, Ω̂0 = [0.1 0.45 0.05]T rad/s,

and ν̂0 = [2.05 0.64 1.29]T m/s.
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Numerical Simulations

POSITION AND ATTITUDE TRAJECTORY OF THE SIMULATED VEHICLE
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Numerical Simulations

ATTITUDE AND POSITION ESTIMATION ERROR
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Numerical Simulations

ANGULAR AND TRANSLATIONAL VELOCITY ESTIMATION ERROR
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CONCLUSIONS AND ONGOING WORK

• The VAE and VPE designs in continuous and discrete time give almost globally
asymptotically stable (AGAS) observers for attitude and pose estimation respec-
tively.

• The stability of these schemes have been rigorously proven, and the discrete time
VAE was compared with that of a sampled continuous observer designs on SO(3)
(often implemented on a computer using quaternions). Numerical results show
that the discrete-time VAE is stable and more reliable for computer implementation
when measurement noise properties are unknown and computational efficiency is
a measure.

• Hölder-continuous finite-time stable (FTS) versions of the VAE and VPE have been
or are being developed in continuous time and in discrete time.
• FTS version of the VAE in continuous time has already been reported

(Sanyal et al. (ECC 2019), Wang et al. (CDC 2019)).
• Discrete-time FTS versions of the VAE and VPE are being developed; the

theory of Hölder-continuous FTS systems in discrete time was recently
developed in late 2019.

• Ongoing work is trying to implement the discrete time VPE in indoor flight exper-
iments on a quadrotor UAV to demonstrate its performance in practice.
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CHALLENGES AHEAD

• The biggest challenge ahead is convincing the research community about the use of
nonlinearly stable observers on Lie groups for rigid body (and multi-body) systems.

• In particular, design of discrete time stable observers on Lie groups for such
systems for (onboard) computer implementation.

• Related challenges:
• Educating current and future researchers (doctoral students) about the use

of Lie group observer designs for rigid body and multi-body systems.
• Making researchers realize the use of the softer aspects of differential

geometry and topology in observer and controller design.
• Transitioning these results into practice.

• Through funding from federal agencies (convincing program managers of
the usefulness of these schemes).

• Through industry collaborations.



Thank you!
Questions? Comments?


