An Optimal Kalman-Consensus Filter for Distributed Implementation over Dynamic Communication Network

Matthew Howard and Zhihua Qu

University of Central Florida

August 8, 2021

Table of Contents

Motivation

2 Background

- Kalman Filter
- Kalman-Consensus Filter
- 3 Network Topology Models and Estimation
- ④ Distributed Optimal KCF (DOKCF)
- 5 Illustrative Example

6 Conclusions

An Application Scenario: Mosaic Warfare

Motivation

2 Background

- Kalman Filter
- Kalman-Consensus Filter
- 3 Network Topology Models and Estimation
- 4 Distributed Optimal KCF (DOKCF)
- 5 Illustrative Example

6 Conclusions

4/30

• Linear stochastic system:

$$x_k = \Phi_{k-1} x_{k-1} + B_{k-1} u_{k-1} + G_{k-1} w_{k-1}$$

with state $x_k \in \mathbb{R}^n$ and input $u_k \in \mathbb{R}^m$.

• Observation:

$$z_k = H_k x_k + v_k$$

or, for $i=1,\cdots,N$,

$$z_{i,k} = H_{i,k} x_k + v_{i,k}$$

• iid stochastic processes:

$$E\{w_k\} = 0, \qquad E\{w_k w_{\kappa}^T\} = Q_k \delta(k, \kappa)$$

$$E\{v_k\} = 0, \qquad E\{v_k v_{\kappa}^T\} = R_k \delta(k, \kappa), \qquad E\{v_k w_{\kappa}^T\} = 0;$$

$$E\{v_{i,k}\} = 0; \qquad E\{v_{i,k} v_{j,\kappa}^T\} = R_{i,k} \delta(k, \kappa) \delta(i,j), \qquad E\{v_{i,k} w_{i,\kappa}^T\} = 0.$$

Howard/Qu (UCF)

Kalman Filter (KF)

It follows from R. Kalman [4] that, letting

$$P_k^+ = E\{(x_k - \hat{x}_k)(x_k - \hat{x}_k)^T\},\$$

then tr (P_k^+) is minimized by using

• Propagation:

$$\hat{x}_{k}^{-} = \Phi_{k-1}\hat{x}_{k-1}^{+} + B_{k-1}u_{k-1}$$
$$P_{k}^{-} = \Phi_{k-1}P_{k-1}^{+}\Phi_{k-1}^{T} + G_{k-1}Q_{k-1}G_{k-1}^{T}$$

• Update:

$$\hat{x}_{k}^{+} = \hat{x}_{k}^{-} + K_{k}(z_{k} - H_{k}\hat{x}_{k}^{-}) P_{k}^{+} = (I - K_{k}H_{k})P_{k}^{-}(I - K_{k}H_{k})^{T} + K_{k}R_{k}K_{k}^{T} K_{k} = P_{k}^{-}H_{k}^{T}(H_{k}P_{k}^{-}H_{k}^{T} + R_{k})^{-1}$$

Howard/Qu (UCF)

6/30

Convergence of KF

• The system of $x_k = \Phi_{k-1}x_{k-1}$ and $z_k = H_kx_k$ is observable if

$$\mathcal{O} = \begin{bmatrix} H_k & H_k \Phi_k & H_k \Phi_k^2 & \dots & H_k \Phi_k^{n-1} \end{bmatrix}^T$$

is of full rank.

• Under observability, the Discrete-Time Algebraic Riccati Equation (DARE)

$$P_{k}^{-} = \Phi_{k-1}P_{k-1}^{-}\Phi_{k-1}^{T} - \Phi_{k-1}P_{k-1}^{-}H_{k-1}^{T} \left(H_{k-1}P_{k-1}^{-}H_{k-1}^{T} + R_{k-1}\right)^{-1} H_{k-1}P_{k-1}^{-}\Phi_{k-1}^{T} + G_{k-1}Q_{k-1}G_{k-1}^{T}$$

has at least one P.S.D. solution, and the Kalman filter is asymptotically convergent as $\hat{x}_k^+ \rightarrow E\{x_k\}$.

....

Kalman-Consensus Filter (KCF)

It follows from R. Olfati-Saber [5] that a KCF can be used to cooperatively track a target: • propagation:

$$\hat{x}_{i,k}^{-} = \Phi_{k-1}\hat{x}_{i,k-1}^{+} + B_{k-1}u_{k-1}$$
$$P_{ij,k}^{-} = \Phi_{k-1}P_{ij,k-1}^{+}\Phi_{k-1}^{T} + G_{k-1}Q_{k-1}G_{k-1}^{T}$$

• Update:

$$\hat{x}_{i,k}^{+} = \hat{x}_{i,k}^{-} + K_{i,k}(z_{i,k} - H_{i,k}\hat{x}_{i,k}^{-}) + M_{i,k}\sum_{j\in\mathcal{N}_{i}}(\hat{x}_{j,k}^{-} - \hat{x}_{i,k}^{-})$$

$$P_{ij,k}^{+} = F_{i,k}P_{ij,k}^{-}F_{j,k}^{T} - F_{i,k}\sum_{s\in\mathcal{N}_{j}}(P_{ij,k}^{-} - P_{is,k}^{-})M_{j,k}^{T} - M_{i,k}\sum_{r\in\mathcal{N}_{i}}(P_{ij,k}^{-} - P_{rj,k}^{-})F_{j,k}^{T}$$

$$+ M_{i,k}\sum_{r\in\mathcal{N}_{i}}\sum_{s\in\mathcal{N}_{j}}(P_{ij,k}^{-} - P_{is,k}^{-} - P_{rj,k}^{-} + P_{rs,k}^{-})M_{j,k}^{T} + K_{i,k}R_{ij,k}K_{j,k}^{T}$$

where $F_{i,k} = I - K_{i,k}H_{i,k}$

Howard/Qu (UCF)

August 8, 2021 8 / 30

KCF Gains and Unsolved Issues

• $K_{i,k}$ can be chosen to minimize tr (() P_{ii})⁺ as does in KF, that is,

$$K_{i,k} = \left[P_{ii,k}^{-} H_{i,k}^{T} - M_{i,k} \sum_{j \in \mathcal{N}_{i}} (P_{ii,k}^{-} - P_{ij,k}^{-}) H_{i,k}^{T} \right] (H_{i,k} P_{ii,k}^{-} H_{i,k}^{T} + R_{ii,k})^{-1}$$

• $M_{i,k}$ impacts both consensus and stability, and the choice in [5] is

$$M_{i,k} = \epsilon rac{P_{ii,k}^-}{1+\|P_{ii,k}^-\|}, \quad \epsilon > 0.$$

Issue #1: KCF requires full knowledge of covariance matrix P⁻_k = [P⁻_{ij,k}. How do we compute P⁻_k? Approximate approaches in literature:

Ignore the cross-covariance - leading to inconsistent estimators

2 Over estimate the cross-covariances - leading to overly pessimistic estimators

- Issue #2: How to optimize the choice of $M_{i,k}$? How to analyze the resulting convergence?
- Issue #3: Existing KCF requires a constant undirected graph. What happens if the topology is directed and changing?

Motivation

2 Background

- Kalman Filter
- Kalman-Consensus Filter

3 Network Topology Models and Estimation

- Oistributed Optimal KCF (DOKCF)
- 5 Illustrative Example

6 Conclusions

Sensing/Communication Topology

• Directed graph $\mathcal{G}_k = (\mathcal{N}, \mathcal{E}_k)$ where

$$\mathcal{N}=\{1,2,...,\mathcal{N}_m\}, \hspace{1em} \mathcal{E}_k\subseteq\{(i,j)|i,j\in\mathcal{N} \hspace{1em} ext{and} \hspace{1em} i
eq j\}.$$

• Laplacian matrix

$$L_k = D_k - A_k$$

where D_k is the degree matrix and A_k is the adjacency matrix.

Distributed Estimation of Laplacian

• If a diagraph if strongly connected, then its Laplacian is irreducible [6] and can be represented by

- -

$$L_k = \sum_{p=1}^{N_m} \lambda_p(L_k) v_p(L_k) v_p^{\mathsf{T}}(L_k)$$

where $\lambda_p(\cdot)$ and $v_p(\cdot)$ are the *p*th eigenvalues and right eigenvectors, respectively • Define $Q_k \triangleq (L_k + I)^{-1}$ as an invertible and irreducible matrix, then

$$\hat{\mathcal{Q}}_{i,k}(l+1) = \hat{\mathcal{Q}}_{i,k}(l) - rac{1}{|\mathcal{N}_{i,k}|}\mathcal{P}_{i,k}\left(|\mathcal{N}_{i,k}|\hat{\mathcal{Q}}_{i,k}(l) - \sum_{j\in\mathcal{N}_{i,k}}\hat{\mathcal{Q}}_{j,k}(l)
ight)$$

can be distributively calculated over $t \in ((k-1)T, kT)T$ [1] where

$$\mathcal{P}_{i,k} = I_n - \frac{1}{[L_k + I]_{i*}^T [L_k + I]_{i*}^T [L_k + I]_{i*}^T [L_k + I]_{i*}^T}$$

• With $\hat{\mathcal{Q}}_{i,k}$ known, the Laplacian can be re-created using

$$\hat{L}_{i,k} = \sum_{p=1}^{N_m} \left[\frac{1}{\lambda_p(\hat{\mathcal{Q}}_{i,k})} - 1 \right] v_p(\hat{\mathcal{Q}}_{i,k}) v_p^T(\hat{\mathcal{Q}}_{i,k})$$

from which the estimated set of in-neighbors of node i can be found via

$$\hat{\mathcal{N}}_{i,k} = \{j | [\hat{L}_{i,k}]_{ij} = -1\}$$

- Convergence in a finite number of steps [1]
- $\hat{\mathcal{N}}_{i,k}$ can be calculated during the higher rate propagation phase

Motivation

2 Background

- Kalman Filter
- Kalman-Consensus Filter
- 3 Network Topology Models and Estimation
- Distributed Optimal KCF (DOKCF)
- 5 Illustrative Example

6 Conclusions

DOKCF

It follows from Howard and Qu [2] that DOKCF admits time-varying digraphs, enables distributed computation of P_k^- , provides optimal choice of $M_{ij,k}$, and ensures convergence: • propagation:

$$\hat{x}_{i,k}^{-} = \Phi_{k-1}\hat{x}_{i,k-1}^{+} + B_{k-1}u_{k-1}$$
$$P_{ij,k}^{-} = \Phi_{k-1}P_{ij,k-1}^{+}\Phi_{k-1}^{T} + G_{k-1}Q_{k-1}G_{k-1}^{T}$$

• update:

$$\hat{x}_{i,k}^{+} = \hat{x}_{i,k}^{-} + K_{i,k}(z_{i,k} - H_{i,k}\hat{x}_{i,k}^{-}) + \sum_{j \in N_{i,k}} M_{ij,k}(\hat{x}_{j,k}^{-} - \hat{x}_{i,k}^{-})$$

$$P_{ij,k}^{+} = F_{i,k}P_{ij,k}^{-}F_{j,k}^{T} - F_{i,k}\sum_{s \in N_{j}} (P_{ij,k}^{-} - P_{is,k}^{-})M_{js,k}^{T} - \sum_{r \in N_{i}} M_{ir,k}(P_{ij,k}^{-} - P_{rj,k}^{-})F_{j,k}^{T}$$

$$+ \sum_{r \in N_{i}}\sum_{s \in N_{j}} M_{ir,k}(P_{ij,k}^{-} - P_{is,k}^{-} - P_{rj,k}^{-} + P_{rs,k}^{-})M_{js,k}^{T} + K_{i,k}R_{ij,k}K_{j,k}^{T}$$

where
$$F_{i,k} = I - K_{i,k} H_{i,k}$$

Howard/Qu (UCF) Optimal Kalman-Consensus Filter

August 8, 2021 15 / 30

Optimal Kalman and Consensus Gains

• Minimizing tr $(P_{ii,k})^+$ with respect to $K_{i,k}$ yields

$$K_{i,k} = \left[P_{ii,k}^{-} - \sum_{j \in N_{i,k}} M_{ij,k} (P_{ii,k}^{-} - (P_{ij,k}^{-})^{T}) \right] H_{i,k}^{T} \left(H_{i,k} P_{ii,k}^{-} H_{i,k}^{T} + R_{ii,k} \right)^{-1}$$

• As $R_{jj,k}$ increases, $P_{j,k}^+$ increases while $K_{j,k}$ monotonely decreases, and \hat{x}_j becomes worse. Accordingly, the corresponding weighting matrix in DOKCF should be decreased. That is,

$$M_{ij,k} = \alpha_{i,k} \Phi_{k-1}^T \sqrt{R_{i,k}^{-1} R_{j,k}^{-1}}$$

where $\alpha_{i,k}$ is optimized by again minimizing tr $(P_{ii,k})^+$:

$$\alpha_{i,k} = -\frac{\operatorname{tr}(\Psi_{i4})}{\operatorname{tr}(\Psi_{i5})}$$

where Ψ_{i4} and Ψ_{i5} are quantities defined in [2]

Howard/Qu (UCF)

Passivity-Short System

• Define the system error as
$$e_{i,k} = E\left\{e_{i,k}^+\right\}$$
 such that

$$e_{i,k} = F_{i,k} \Phi_{k-1} e_{i,k-1} + \nu_{i,k-1}$$

where $F_{i,k} = I - K_{i,k}H_{i,k}$ and

$$u_{i,k-1} = \sum_{j \in \mathcal{N}_{i,k}} M_{ij,k} \Phi_{k-1} \left(e_{j,k-1}^+ - e_{i,k-1}^+
ight)$$

• If there exists a storage function for a dynamic subsystem defined by $e_{i,k} = \mathcal{F}_i(e_{i,k-1}, \nu_{i,k-1})$ such that

$$egin{aligned} \Delta V_i &\stackrel{ riangle}{=} V_i(e_{i,k}) - V_i(e_{i,k-1}) \ &\leq e_{i,k-1}^{\mathcal{T}}
u_{i,k-1} + rac{1}{2} \epsilon_i \|
u_{i,k-1}\|^2, \end{aligned}$$

then the subsystem is considered input-feedforward passivity short (PS) [7, 3]

Howard/Qu (UCF)

• Following from cooperative control theory [1] with an appropriate storage function of

$$V_i = rac{1}{2} e_{i,k}^{\mathcal{T}} e_{i,k}$$

the DOKCF is shown to be *input-feedforward passivity short (PS)* from input $\nu_{i,k-1}$ to output $e_{i,k}$

• To ensure *input-feedforward passivity short (PS)*,

$$\alpha_{i,k} \leq \overline{\alpha}$$

- The DOKCF is, therefore, concluded to be asymptotically stable such that $e_{i,k}
 ightarrow 0$
- Details of the proof can be found in [2]

- Recall the global P_k^- needed for optimal and consistent implementation
- Covariance equation do not rely on real-time measurements
- As such, if measurement models $(H_{i,k}, R_{i,k})$ are known throughout, P_k^- can be calculated by each node
- Simplification can be achieved to reduce N_m^2 covariance computations:
 - Through the covariance definition, P_k^- is symmetry and only one triangle is required $(N_m + \sum_{l=1}^{N_m 1} l)$
 - Rows of P_k^- can be shared between neighbors, neighbors' neighbors, etc.
 - Converges to (N_m) , or the same as a complete digraph

Distributed Implementation II

Initialization Phase:

- Set all initial conditions (ie. $P_{ii,0}^- = I$ and $P_{ii,0}^- = I$)
 - $P^{-}_{ij,0} = 0)$
- Share $(H_{i,k}, R_{i,k})$

Execution Phase:

- Propagate state, covariances, cross-covariances
- Network topology estimation
- Share information with neighbors
- Update state and remaining covariances & cross-covariances

Motivation

2 Background

- Kalman Filter
- Kalman-Consensus Filter
- 3 Network Topology Models and Estimation
- Oistributed Optimal KCF (DOKCF)

5 Illustrative Example

6 Conclusions

- A simple time-varying example was formulated
- Time-varying system model with $u_k = 0$

$$\Phi_k = \left[\begin{array}{cc} 1.0 + 0.025 \sin(0.3k) & -0.015 \\ 0.015 & 1.0 + 0.05 \sin(0.5k) \end{array} \right]$$

• The process and measurement noises defined as

$$Q = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \quad R_i = 5e^i \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

• Measurement noises greater for higher indices

• Root Mean Squared Error used to quantify the accuracy of the estimator

$$RMSE_{k} = \sqrt{\frac{1}{k}\sum_{s=1}^{k}\left(x_{s} - \hat{x}_{s}^{+}\right)^{T}\left(x_{s} - \hat{x}_{s}^{+}\right)}$$

- RMSE of the state estimate shows appropriate trend
- Covariances show convergence to a steady-state with oscillation based on time-varying Φ_k
- Results used as a baseline for comparison

- The DOKCF is simulated using a simple fixed ring network topology
- The RMSE's are better clustered together, as compared to the KF, with:
 - High measurement noise systems decreasing
 - Low measurement noise systems roughly unaffected

24/30

- A switching communication network is introduced with three different topologies
 - Starts with same ring network as before
 - First switch connects system with worst measurement noise, node 5, to nodes 2 and 3
 - Second switch reverts back to ring network but with lowest noise system connected to nodes 3 and 4

• Switching occurs at time steps k = 200 and k = 400

DOKCF with Switching Topology II

- Simulation shows the filters remain stable through the instantaneous topology switches
- RMSE shows consensus has converged and network switching has little effect
- Covariance, however, is impacted based on network topology
 - At k = 200, Node 3 shows improvement despite being connected to 5 (worse measurement noise)
 - At *k* = 400, Nodes 2, 3, and 4 decrease due to the distribution of node 1 accurate estimate

DOKCF with Switching Topology for LTI System

- Time-varying perturbations are turned off, forced k = 0 in Φ_k, to better see covariance impacts
- Shows filters achieve steady-state covariances between network switches
- Same covariance trend observed at network switches

Motivation

2 Background

- Kalman Filter
- Kalman-Consensus Filter
- 3 Network Topology Models and Estimation
- ④ Distributed Optimal KCF (DOKCF)
- 5 Illustrative Example

6 Conclusions

- Improvements of DOKCF over KCF:
 - Optimized matrices in weighted consensus for better accuracy
 - Dynamic sensing/communication networks
 - Stability ensured for directed network
 - Distributed computation of P_k^-
- Further research needed to
 - Extend DOKCF to nonlinear systems with nonlinear measurements
 - Stability analysis for switching topology and for nonlinear systems
 - Optimizing network topology

References

[1] A. Gusrialdi and Z. Qu.

Distributed estimation of all the eigenvalues and eigenvectors of matrices associated with strongly connected digraphs. *IEEE Control Systems Letters*, 1(2):328–333, 2017.

[2] M. D. Howard and Z. Qu.

An optimal Kalman-consensus filter for distributed implementation over a dynamic communication network. *IEEE Access*, 9:66696–66706, 2021.

[3] Y. Joo, R. Harvey, and Z. Qu.

Preserving and achieving passivity-short property through discretization. *IEEE Transactions on Automatic Control*, 65(10):4265–4272, 2020.

[4] R. Kalman.

A new approach to linear filtering and prediction problems. Transactions of the ASME, Journal of Basic Engineering, 82D:35–45, 1960.

[5] R. Olfati-Saber.

Kalman-consensus filter : Optimality, stability, and performance.

[6] Z. Qu.

Cooperative Control of Dynamical Systems. Springer-Verlag London, 2009.

[7] J. Willems.

Dissipative dynamical systems part i: General theory. *Arch. Rational Mech. Anal.*, 45(5):321–351, 1972.