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An Application Scenario: Mosaic Warfare
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Target

Linear stochastic system:

xk = Φk−1xk−1 + Bk−1uk−1 + Gk−1wk−1

with state xk ∈ Rn and input uk ∈ Rm.

Observation:

zk = Hkxk + vk

or, for i = 1, · · · ,N,

zi ,k = Hi ,kxk + vi ,k

iid stochastic processes:

E{wk} = 0, E{wkw
T
κ } = Qkδ(k , κ)

E{vk} = 0, E{vkvTκ } = Rkδ(k , κ), E{vkwT
κ } = 0;

E{vi ,k} = 0; E{vi ,kvTj ,κ} = Ri ,kδ(k, κ)δ(i , j), E{vi ,kwT
i ,κ} = 0.
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Kalman Filter (KF)

It follows from R. Kalman [4] that, letting

P+
k = E{(xk − x̂k)(xk − x̂k)T},

then tr
(
P+
k

)
is minimized by using

Propagation:

x̂−k = Φk−1x̂
+
k−1 + Bk−1uk−1

P−k = Φk−1P
+
k−1ΦT

k−1 + Gk−1Qk−1G
T
k−1

Update:

x̂+
k = x̂−k + Kk(zk − Hk x̂

−
k )

P+
k = (I − KkHk)P−k (I − KkHk)T + KkRkK

T
k

Kk = P−k HT
k (HkP

−
k HT

k + Rk)−1
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Convergence of KF

The system of xk = Φk−1xk−1 and zk = Hkxk is observable if

O =
[
Hk HkΦk HkΦ2

k . . . HkΦn−1
k

]T
is of full rank.

Under observability, the Discrete-Time Algebraic Riccati Equation (DARE)

P−k = Φk−1P
−
k−1ΦT

k−1 − Φk−1P
−
k−1H

T
k−1

(
Hk−1P

−
k−1H

T
k−1 + Rk−1

)−1
Hk−1P

−
k−1ΦT

k−1

+ Gk−1Qk−1G
T
k−1

has at least one P.S.D. solution, and the Kalman filter is asymptotically convergent as
x̂+
k → E{xk}.
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Kalman-Consensus Filter (KCF)

It follows from R. Olfati-Saber [5] that a KCF can be used to cooperatively track a target:

propagation:

x̂−i ,k = Φk−1x̂
+
i ,k−1 + Bk−1uk−1

P−ij ,k = Φk−1P
+
ij ,k−1ΦT

k−1 + Gk−1Qk−1G
T
k−1

Update:

x̂+
i ,k = x̂−i ,k + Ki ,k(zi ,k − Hi ,k x̂

−
i ,k) + Mi ,k

∑
j∈Ni

(x̂−j ,k − x̂−i ,k)

P+
ij ,k = Fi ,kP

−
ij ,kF

T
j ,k − Fi ,k

∑
s∈Nj

(P−ij ,k − P−is,k)MT
j ,k −Mi ,k

∑
r∈Ni

(P−ij ,k − P−rj ,k)FT
j ,k

+ Mi ,k

∑
r∈Ni

∑
s∈Nj

(P−ij ,k − P−is,k − P−rj ,k + P−rs,k)MT
j ,k + Ki ,kRij ,kK

T
j ,k

where Fi ,k = I − Ki ,kHi ,k
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KCF Gains and Unsolved Issues

Ki,k can be chosen to minimize tr (()Pii )
+ as does in KF, that is,

Ki,k =

P−ii,kHT
i,k −Mi,k

∑
j∈Ni

(P−ii,k − P−ij,k )HT
i,k

 (Hi,kP
−
ii,kH

T
i,k + Rii,k )−1

Mi,k impacts both consensus and stability, and the choice in [5] is

Mi,k = ε
P−ii,k

1 + ‖P−ii,k‖
, ε > 0.

Issue #1: KCF requires full knowledge of covariance matrix P−k = [P−ij,k . How do we compute P−k ? Approximate

approaches in literature:

1 Ignore the cross-covariance - leading to inconsistent estimators
2 Over estimate the cross-covariances - leading to overly pessimistic estimators

Issue #2: How to optimize the choice of Mi,k? How to analyze the resulting convergence?

Issue #3: Existing KCF requires a constant undirected graph. What happens if the topology is directed and
changing?

Howard/Qu (UCF) Optimal Kalman-Consensus Filter August 8, 2021 9 / 30



10/30

Table of Contents

1 Motivation

2 Background
Kalman Filter
Kalman-Consensus Filter

3 Network Topology Models and Estimation

4 Distributed Optimal KCF (DOKCF)

5 Illustrative Example

6 Conclusions

Howard/Qu (UCF) Optimal Kalman-Consensus Filter August 8, 2021 10 / 30



11/30

Sensing/Communication Topology

Directed graph Gk = (N , Ek) where

N = {1, 2, ...,Nm}, Ek ⊆ {(i , j)|i , j ∈ N and i 6= j}.

Laplacian matrix
Lk = Dk − Ak

where Dk is the degree matrix and Ak is the adjacency matrix.

Examples:

L1 =

 2 −1 −1
−1 2 −1
−1 −1 2

 L2 =

 1 −1 0
0 1 −1
−1 −1 2


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Distributed Estimation of Laplacian

If a diagraph if strongly connected, then its Laplacian is irreducible [6] and can be
represented by

Lk =
Nm∑
p=1

λp(Lk)vp(Lk)vTp (Lk)

where λp(·) and vp(·) are the pth eigenvalues and right eigenvectors, respectively

Define Qk , (Lk + I )−1 as an invertible and irreducible matrix, then

Q̂i ,k(l + 1) = Q̂i ,k(l)− 1

|Ni ,k |
Pi ,k

|Ni ,k |Q̂i ,k(l)−
∑

j∈Ni,k

Q̂j ,k(l)


can be distributively calculated over t ∈ ((k − 1)T , kT )T [1] where

Pi ,k = In −
1

[Lk + I ]i∗[Lk + I ]Ti∗
[Lk + I ]Ti∗[Lk + I ]i∗
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Network Topology Estimation

With Q̂i ,k known, the Laplacian can be re-created using

L̂i ,k =
Nm∑
p=1

[
1

λp(Q̂i ,k)
− 1

]
vp(Q̂i ,k)vTp (Q̂i ,k)

from which the estimated set of in-neighbors of node i can be found via

N̂i ,k = {j |[L̂i ,k ]ij = −1}

Convergence in a finite number of steps [1]

N̂i ,k can be calculated during the higher rate propagation phase
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DOKCF

It follows from Howard and Qu [2] that DOKCF admits time-varying digraphs, enables
distributed computation of P−k , provides optimal choice of Mij ,k , and ensures convergence:

propagation:

x̂−i ,k = Φk−1x̂
+
i ,k−1 + Bk−1uk−1

P−ij ,k = Φk−1P
+
ij ,k−1ΦT

k−1 + Gk−1Qk−1G
T
k−1

update:

x̂+
i ,k = x̂−i ,k + Ki ,k(zi ,k − Hi ,k x̂

−
i ,k) +

∑
j∈Ni,k

Mij ,k(x̂−j ,k − x̂−i ,k)

P+
ij ,k = Fi ,kP

−
ij ,kF

T
j ,k − Fi ,k

∑
s∈Nj

(P−ij ,k − P−is,k)MT
js,k −

∑
r∈Ni

Mir ,k(P−ij ,k − P−rj ,k)FT
j ,k

+
∑
r∈Ni

∑
s∈Nj

Mir ,k(P−ij ,k − P−is,k − P−rj ,k + P−rs,k)MT
js,k + Ki ,kRij ,kK

T
j ,k

where Fi ,k = I − Ki ,kHi ,k
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Optimal Kalman and Consensus Gains

Minimizing tr (Pii ,k)+ with respect to Ki ,k yields

Ki ,k =

P−ii ,k − ∑
j∈Ni,k

Mij ,k(P−ii ,k − (P−ij ,k)T )

HT
i ,k

(
Hi ,kP

−
ii ,kH

T
i ,k + Rii ,k

)−1

As Rjj ,k increases, P+
j ,k increases while Kj ,k monotonely decreases, and x̂j becomes worse.

Accordingly, the corresponding weighting matrix in DOKCF should be decreased. That is,

Mij ,k = αi ,kΦT
k−1

√
R−1
i ,k R

−1
j ,k

where αi ,k is optimized by again minimizing tr (Pii ,k)+:

αi ,k = − tr (Ψi4)

tr (Ψi5)

where Ψi4 and Ψi5 are quantities defined in [2]
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Passivity-Short System

Define the system error as ei ,k = E
{
e+
i ,k

}
such that

ei ,k = Fi ,kΦk−1ei ,k−1 + νi ,k−1

where Fi ,k = I − Ki ,kHi ,k and

νi ,k−1 =
∑

j∈Ni,k

Mij ,kΦk−1

(
e+
j ,k−1 − e+

i ,k−1

)
If there exists a storage function for a dynamic subsystem defined by ei ,k = Fi (ei ,k−1,
νi ,k−1) such that

∆Vi
4
= Vi (ei ,k)− Vi (ei ,k−1)

≤ eTi ,k−1νi ,k−1 +
1

2
εi‖νi ,k−1‖2,

then the subsystem is considered input-feedforward passivity short (PS) [7, 3]
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Stability for DOKCF under Directed Topology

Following from cooperative control theory [1] with an appropriate storage function of

Vi =
1

2
eTi ,kei ,k

the DOKCF is shown to be input-feedforward passivity short (PS) from input νi ,k−1 to
output ei ,k

To ensure input-feedforward passivity short (PS),

αi ,k ≤ α

The DOKCF is, therefore, concluded to be asymptotically stable such that ei ,k → 0

Details of the proof can be found in [2]
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Distributed Implementation I

Recall the global P−k needed for optimal and consistent implementation

Covariance equation do not rely on real-time measurements

As such, if measurement models (Hi ,k , Ri ,k) are known throughout, P−k can be calculated
by each node

Simplification can be achieved to reduce N2
m covariance computations:

Through the covariance definition, P−
k is symmetry and only one triangle is required

(Nm +
∑Nm−1

l=1 l)
Rows of P−

k can be shared between neighbors, neighbors’ neighbors, etc.

Converges to (Nm), or the same as a complete digraph
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Distributed Implementation II

Initialization Phase:

Set all initial conditions (ie. P−ii ,0 = I and

P−ij ,0 = 0)

Share (Hi ,k , Ri ,k)

Execution Phase:

Propagate state, covariances,
cross-covariances

Network topology estimation

Share information with neighbors

Update state and remaining covariances &
cross-covariances
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Setup

A simple time-varying example was formulated

Time-varying system model with uk = 0

Φk =

[
1.0 + 0.025 sin(0.3k) −0.015

0.015 1.0 + 0.05 sin(0.5k)

]
The process and measurement noises defined as

Q =

[
1 0
0 1

]
Ri = 5e i

[
1 0
0 1

]
Measurement noises greater for higher indices
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Kalman Filter Baseline

Root Mean Squared Error used to
quantify the accuracy of the estimator

RMSEk =

√√√√1

k

k∑
s=1

(
xs − x̂+

s

)T (
xs − x̂+

s

)
RMSE of the state estimate shows
appropriate trend

Covariances show convergence to a
steady-state with oscillation based on
time-varying Φk

Results used as a baseline for comparison
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DOKCF with Static Topology

The DOKCF is simulated using a simple
fixed ring network topology

The RMSE’s are better clustered together,
as compared to the KF, with:

High measurement noise systems
decreasing
Low measurement noise systems roughly
unaffected
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DOKCF with Switching Topology I

A switching communication network is introduced with three different topologies

Starts with same ring network as before
First switch connects system with worst measurement noise, node 5, to nodes 2 and 3
Second switch reverts back to ring network but with lowest noise system connected to nodes
3 and 4

Switching occurs at time steps k = 200 and k = 400
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DOKCF with Switching Topology II

Simulation shows the filters remain stable
through the instantaneous topology
switches

RMSE shows consensus has converged
and network switching has little effect

Covariance, however, is impacted based on
network topology

At k = 200, Node 3 shows improvement
despite being connected to 5 (worse
measurement noise)
At k = 400, Nodes 2, 3, and 4 decrease
due to the distribution of node 1
accurate estimate
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DOKCF with Switching Topology for LTI System

Time-varying perturbations are turned off,
forced k = 0 in Φk , to better see
covariance impacts

Shows filters achieve steady-state
covariances between network switches

Same covariance trend observed at
network switches
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Summary and Future Research

Improvements of DOKCF over KCF:

Optimized matrices in weighted consensus for better accuracy
Dynamic sensing/communication networks
Stability ensured for directed network
Distributed computation of P−

k

Further research needed to

Extend DOKCF to nonlinear systems with nonlinear measurements
Stability analysis for switching topology and for nonlinear systems
Optimizing network topology
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